

## 東北大学1.2 GeVブースターシンクロトロン復旧の現状

日出富士雄,柏木茂,柴崎義信,高橋健, 長澤育郎,南部健一,武藤俊哉,濱広幸

東北大学 電子光理学研究センター





- はじめに(加速器施設の紹介と復旧の状況)
- 電子シンクロトロンの改修
  - 改修の概要
  - 機能複合型四極電磁石の導入
  - 電源の更新
  - 真空系,制御系の更新
- ビーム運転の状況
- まとめ

## はじめに (加速器配置図 震災前)





はじめに (加速器配置図 現在)



新入射器の建設

→ 柏木 他, "東北大学電子ブースターシンクロトロン入射用90MeVリナックの開発状況",SAOT02



電子シンクロトロンの改修

# 1.2 GeV STB (Stretcher-Booster) ring から 1.3 GeV BST (Booster Storage) ring へ

パルスストレッチャーとしての機能は除外する 従来より高電流運転で、ビーム品質も高い実験を可能にする 更に将来的には教育目的の放射光利用などの新しい利用も目指す 運転エネルギーの変更(入射:150 MeV → 90 MeV, 最高: 1.2 GeV → 1.3 GeV)

### <u> 改修内容</u>

- ・ 六極磁場入り機能複合型四極電磁石の導入
  → クロマティシティの補正を可能に
  ヘッドテール不安定性の抑制
- 電磁石電源の更新
  (BM, Q-mag 用トラッキング電源, 入射用パルス電源の更新)
- 真空系の改善
- 制御系の更新





# 1.3 GeV BST ring



2013年8月



ラティス関数と主要パラメータ



Lattice Double-bend, 4 cell Circumference 49.7 m Maximum energy 1.3 GeV **Injection energy 90 MeV Betatron tune** (3.24, 1.18)Natural chromaticity (-5.59, -4.43)**Corrected chromaticity** (1.38, 1.23)**RF** voltage 400 kV 160 nmrad (@ 1.2 GeV) Natural emittance Momentum compaction 0.0458 **Dispersion at straigt section** 0.6 m **Beam current** 200 mA (@ 1.2 GeV) **Touschek lifetime** > 48 hours (@ 1.2 GeV)



# (1)機能複合型四極電磁石の導入

# 機能複合型四極電磁石 収束(QSF)・発散(QSD)用各8台製作 SIGMAPHI社製



Field measurement by rotating coil

磁石の設計・製作およびアラインメント等 → W. Beeckmann, et. al., SAP067



poleface:  $kxy + m(3x^2y - y^3)/6 = kR^2/2 + mR^3/6$ bore radius : R = 50 mm

Field strength (@p = 1.3 GeV/c) QSF: B'=8.7 T/m B''=20.9 T/m<sup>2</sup> QSD: B'=9.6 T/m B''=36.5 T/m<sup>2</sup>





(2)電磁石電源の更新

トラッキング電源

### BM, Q-mag 用 計4台製作 東芝三菱電機産業システム(株)社製

|                   | Dipole    | QC        | QSF, QSD  |
|-------------------|-----------|-----------|-----------|
| Min. current      | 80 A      | 40 A      | 35 A      |
| Max. current      | 1400 A    | 800 A     | 700 A     |
| Output<br>voltage | 645 V     | 55 V      | 77 V      |
| Ramping rate      | 980 A/sec | 665 A/sec | 565 A/sec |

#### もとは医療用重粒子線照射施設の 電磁石電源用に開発されたもの

#### 優れた性能

| 安定度 | $\pm 1 \times 10^{-5}$ | 以下 |
|-----|------------------------|----|
| 追随性 | $\pm 1 \times 10^{-4}$ | 以下 |





(3)パルス電源の更新

# 入射用パルス電源 セプタム,キッカー用計4台製作 日新パルス電子(株)社製



|                   | kicker magnet     | Septum magnet       |
|-------------------|-------------------|---------------------|
| Max. current      | 220 A             | 1210A               |
| Pulse width       | > 1 µs @flat part | $200{\pm}~10~\mu s$ |
| Current stability | < 1 % (p-p)       | < 2 % (p-p)         |
| Fall time         | <~0.5 µs          | -                   |
| Timing jitter     | < 10 ns           | < 10 ns             |
| Rep.rate          | > 10 pps          | >10 pps             |





## (4)制御系・真空系の更新



制御室を一新 トリガー系を新規に構築 古いPLCを更新 制御プログラムも新たに構築中

真空系

NEGポンプの新規設置 (C200; KEKより移譲) 真空ゲージの整備





## ビーム運転の状況



•5月下旬>

更新した制御系の配線作業や、制御プログラムの開発など を並行して行いながら、コミッショニングを開始

- 6月7日>
  リング内に多数回のビームの周回を確認
- 6月13日>
  入射ビームのRF捕獲に成功
- 7月10日>
  最高エネルギー(約1.3 GeV)の加速に成功 (ビーム電流 ~ 2 mA)
- •現在>
  - 基礎データ確認と周回電流の向上を図っている



リングのモニターの配置図





## 運転開始初期のビーム周回の様子



パルス幅 ~200 ns 以下 電流 ~20 mA エミッタンス ε<sub>n</sub> < 10 mm mrad



ビーム周回の様子

### 運転開始初期 (6/7)



### ストリップラインモニター

### RF捕獲成功の際 (6/13)





ビーム入射について

- 機能複合型四極電磁石
  - → 入射時の大振幅のビームに対する六極磁場の影響 (バンプ内側の六極磁場の存在が不可避)
- 低エネルギー(90 MeV)の入射ビームに対して 放射減衰に要する時間が10 秒オーダー
  - ~ 現状の残留ガスによるビーム寿命と同程度
  - → \* 減衰したビームのチューンやクロマティシティの 測定が困難
    - \*現在は入射直後の大振幅のビームでチューン測定 (振幅依存のチューンシフトの影響有)
- 振動振幅の減衰を待てない
  - → 通常のビームのスタッキングも期待できない 現在は、入射後ただちにビーム加速している (まずは加速したビームを用いて基礎データを確認中)



 $E_{B} = 900 \text{ MeV}$ 



dispersion [m]







分散関数の調整によるクロマティシティの補正を確認できた



クロマティシティ補正 無し



CODは、概ね変化していない 実際にはパターン運転時の動的なチューンの観測が必要

東北大学





- 震災後2年以上にわたり復旧作業を続けてきたが、
  5月より試験運転開始し、7月に最高エネルギーに到達
- しかし未だビーム電流は少なく、ビームの理解も不十分 本年後半の共同利用再開を目指して、ビーム調整を進める
- 現状ではヘッドテール不安定性が起きるような高電流の運転が出来ていない(加速初期のビーム損失も多い)
  当初の目的であったクロマティシティの補正を確認できた
  → かつて200 MeV でのヘッドテール不安定性の閾値が5 mA程度だったので、今回の改修で今後の高度化に期待
- 真空系の改善は大前提であるが、将来的な放射光利用等の新しいアプリケーションも可能となるように、今後の復興への道筋をつけている





今回の復旧作業に際しては,多くの方々のご協力を頂き, ようやくビーム運転の再開に至りました.

SIGMAPHI:

機能複合型四極電磁石の製作・アラインメント (株) 東芝及び東芝三菱電機産業システム株式会社: シンクロトロン電源の更新 日新パルス電子株式会社:

入射用パルス電源の更新

*KEK真空グループの金澤先生をはじめ関係者の皆様*: 多数のNEGポンプの移譲

ここに改めて感謝の意を表します.