PASJ2019 FRPI015

コンプトン散乱ガンマ線の自動エネルギー可変計測のための ニュースバル加速器運転自動化

AUTOMATIC OPERATION OF NEWSUBARU RING FOR AUTOMATIC ENERGY VARIABLE MEASUREMENT OF COMPTON SCATTERED GAMMA RAYS

橋本智^{#, A)}, 宮本修治^{A)}, 鍛治本和幸^{B)}, 皆川靖幸^{B)}

Satoshi Hashimoto^{#, A)}, Shuji Miyamoto^{A)}, Kazuyuki Minagawa^{B)}, Yasuyuki Minagawa^{B)}

^{A)}University of Hyogo, LASTI

^{B)}JASRI

Abstract

We have developed the new system that automatically controls the energy ramping of the NewSUBARU electron storage ring for the Laser Compton Scattered gamma-ray experiments. Using this system the ramping operation becomes more stable and users can easily do their Gamma-ray energy scans experiments than before.

1. はじめに

兵庫県立大ニュースバル放射光施設[1]はレーザー コンプトン散乱による準単色・エネルギー可変・高 指向性のガンマ線ビームライン BL01 を有する。蓄 積リング型のコンプトンガンマ線源では蓄積電子 ビームエネルギーを変えることでガンマ線ビームの エネルギーを連続的に可変でき、ガンマ線エネル ギー依存性を測定する際には大きな利点となる。

ガンマ線利用に応じてニュースバルの電子ビーム エネルギーを小刻みに変えながらビーム調整を行う 必要があるが、従来この操作の一部は人による監視 と手動操作が必要であった。そのため誤操作や調整 不足により生じるビーム損失を低減し、光源の安定 化を図ることは大きな課題であった。

本研究では個々のガンマ線ユーザーの要求に合わ せて様々なパターンの電子エネルギー加減速を安定 かつ容易にするため、各ユーザーに応じた加減速パ ターンの自動生成、加速器加減速に関わる操作の自 動化およびガンマ線の自動計測を実現するシステム を開発したので報告する。

2. 電子蓄積エネルギーの加減速の問題点

ニュースバルは SPring-8 線形加速器から 1.0 GeV ビームを入射後に、蓄積エネルギーを 0.5~1.5 GeV の範囲で加減速することができる。エネルギーの刻 み幅は数 10 MeV で、各エネルギーステップ毎に B, Q, Sx, ST などすべての電磁石についてそのエネル ギーでの電流値を事前に調整しておき、加減速開始 とともに順番にそれらの値を各電源に与えることで 加減速を行う。例えば 1.5 GeV 加速の場合は 14 ス テップあり、加速終了までに 10 数分を要する。

エネルギー加減速の問題として、再現性がある。 つまり一度、加減速パラメータを調整しても、様々 な要因、例えば環境温度やリング周長の季節変動、 ビーム条件などにより、うまく加減速できない場合 もあり定期的に再調整が必要になる。

1.5 GeV 利用運転の場合は、最終使用エネルギー が決まっており(1.5 GeV)、週に1,2回は同じ 加速パラメータを使用するので、万一問題があって もすぐに微調整が可能である。一方、ガンマ線利用 における加減速運転の場合、各ユーザー・各実験に よって使用したい電子エネルギーは異なるので、そ の実験に合わせたオーダーメードの加減速パラメー タセットが必要になる。多数の加減速パラメータを 一つ一つ定期的に手動で再調整するのは困難であり、 実際のユーザー実験ではビーム寿命の悪化や損失が よく起こっており、これらの改善が課題であった。

またガンマ線エネルギーを変えながら計測する実 験の場合、電子ビーム加減速の一時停止し、ビーム 調整(ビーム機動やベータトロンチューンなど)の 後、ビームラインでの計測を行い、計測終了後に次 の加減速を実行する一連の操作を手動で行わなけれ ばならず、操作の自動化による省力化も課題であっ た。

3. リング加減速運転の自動化

これらの課題の解決のため、リング加速器加減速 運転の自動化、特にエネルギーを変えながらガンマ 線利用を繰り返す実験の自動化に取り組んできた。

3.1 加減速パラメータの自動作成

各ユーザーの求めるオーダーメードの加減速パラ メータを最新の標準データから自動で作成できるよ うにした(Fig. 1、Fig. 2)。標準データは100 MeV ステップでステップ数の少ない加減速パラメータで ある。各ユーザーが使用するステップ数の大きい データはこの標準データから補間により作成される。 一年を通して定期点に調整・更新すればいいのはス テップ数の少ない標準データだけでよく、標準デー タさえきちんと管理されていればどのようなエネル ギー刻み幅、ステップ数であってもすぐに安定な加 減速パラメータを自動で生成できるようになった。

[#]hashi@lasti.u-hyogo.ac.jp

Proceedings of the 16th Annual Meeting of Particle Accelerator Society of Japan July 31 - August 3, 2019, Kyoto, Japan

PASJ2019 FRPI015

Figure 1: Generation of multiple ramping data sets from a reference data.

Figure 2: Automatic generation of the new ramping data. The new data is generated by an interpolation.

3.2 加速器運転操作の自動化

電磁石の通電量を制御するエネルギー加減速、 COD (Closed Orbit Distortion)の測定・補正など主 なビーム制御は C 言語で作成されたプログラムで制 御される一方、ベータトロンチューンチューンの測 定・補正などモニター関連機器は LabVIEW で制御 されているものが多く、今回の一連の操作自動化の ためにはこれらの機器間の連携が必要であった。既 存の C 言語プログラムの改修は最小限にするために、 各機器制御の流れ全体をコントロールする役割を PC(LabVIEW)にもたせて、C 言語プログラムと LabVIEW プログラムの間のやり取りはコマンドの 受け渡しで行うよう実装した。

Figure 3 に減速自動運転時の操作の流れを示す。 ビーム入射し、ガンマ線自動計測を開始後、(1)最初 の減速、(2)各種ビーム調整、(3)ビームラインでの計 測を行う。その後、減速パラメータに指定された各 エネルギーにおいて、(1)から(3)を繰り返し、最終エ ネルギーまで到達する。

(1)のエネルギー加減速は既存の C 言語プログラム が担当し、各電磁石の電流量を同期して変えていく。

(2)のビーム調子では先ず C 言語プログラムで COD 測定を行い、変位が大きければ補正を行う。次 にベータトロンチューンを計測し、最適値からずれ ていれば自動で補正を行う。チューンの測定・補正 は LabVIEW プログラムが行う。さらに電子エネル ギーに応じて RF 電圧の調節やタウシェック寿命改 善のために印加している RF シェーカーの強度の調 整などを自動で行う。

(3)のビームライン計測では指定された時間、加速 器の状態を保持しビームラインでの計測が完了する のを待つ。

Figure 3: Time sequence of deceleration operation.

3.3 ビームライン測定自動化との連動

加速器側の自動化だけでなく、加速器の操作と連 動してビームラインでの計測も連動動作できるよう ビームライン計測可能な時間に TTL5V 信号をビー ムライン BL01a で生成できるようにした。Figure 4 に本システムに関連する機器のネットワーク図を示 す。ビームライン側にはネットワーク接続 5V 信号 発生器(LINEEYE)の他、専用ノート PC を設置しリ ング加減速やビーム調整など、自動処理の進行状況 をモニターすることができる。またこの欄末には自 動運転操作に関するログデータが残るので、ユー ザーは後日オフラインで取得データの解析に使用で きる。

Figure 4: Network distributed equipments in this system. Flow of all sequence is controlled by a PC.

4. 実験結果

システムの動作検証を行うため、1.0 から 0.4 GeV まで 0.1 GeV 幅で計5ステップの標準ファイルを作 成し、各エネルギーでビーム調整を行い、各電磁石 の通電量を決定した。この標準データから 1.0 から 0.4 GeV まで 14 ステップの新しい減速パタメータ を作成し、この減速パタメータを用いて実際に 300 mA 蓄積後に自動減速運転を行った。各エネル ギーではビーム調整後に2分間のビームライン測定 時間を含んでいる。Figure 5 に蓄積電子のエネル ギーと電流値を、Fig. 6 に蓄積エネルギーとビーム

Proceedings of the 16th Annual Meeting of Particle Accelerator Society of Japan July 31 - August 3, 2019, Kyoto, Japan

PASJ2019 FRPI015

寿命(蓄積電流とビーム寿命の積)を示す。低エネ ルギーになるほどタウシェック効果が顕著になり ビーム寿命が減少するが、ビーム損失や異常な寿命 低下は見られず、問題なく減速に成功した。RF 電 圧の最適化でもう少しビーム寿命は改善できる見込 みである。Figure 6 より各ステップで減速直後に ビーム寿命が落ち込んでいるのは、COD 測定や チューンのズレによるものであり、これらの自動補 正によりビーム寿命が改善しているのがわかる。

Figure 5: Electron beam deceleration by auto-generated ramping data. Stored beam energy (blue) and stored beam current (red).

Figure 6: Electron beam deceleration by an autogenerated ramping data. Stored beam energy (blue) and beam lifetime I*tau (red).

5. まとめ

本研究ではコンプトンガンマ線エネルギー可変の ため、電子ビームエネルギーをより安定に損失なく 加減速できるよう、任意のパターンの加減速パラ メータを自動生成できるようにした。また本研究で 開発したシステムにより、ボタンを押すだけで任意 のパターンのガンマ線エネルギー依存性計測を完了 できる加速器運転操作の自動化が可能になった。本 研究の結果、ガンマ線利用研究において課題であっ たエネルギー加減速の安定性の問題は解決し、 ニュースバル・ガンマ線光源性能の向上が実現でき た。今後はユーザーが自分で操作できるよう本シス テムのユーザーインターフェースの改善やエラー処 理の改善を図ると共に、ユーザーグループと連携し て本システムを使用したガンマ線エネルギースキャ ン計測を実施する予定である。

謝辞

本研究は平成 30 年度兵庫県立大学特別研究助成 の支援により行われました。

参考文献

[1] http://www.lasri.u-hyogo.ac.jp/NS