PASJ2022 FRP022

APU 型アンジュレータの磁場測定の経験

EXPERIENCE OF MAGNETIC MEASUREMENT OF ADJUSTABLE PHASE UNDULATOR

土屋 公央^{#, A)}, 阿達 正浩 ^{A)}, 齊藤 寛俊 ^{A)}, 江口 柊 ^{A)}, 塩屋 達郎 ^{A)}, 加藤 龍好 ^{A)} Kimichika Tsuchiya ^{#, A)}, Masahiro Adachi^{A)}, Hirotoshi Saito^{A)}, Shu Eguchi^{A)}, Tatsurou Shioya^{A)}, Ryukou Kato^{A)} ^{A)} Accelerator Laboratory, High Energy Accelerator Research Organization (KEK)

Abstract

At the KEK compact Energy Recovery Linac (cERL), we operate two undulators as a light source for the cERL-FEL project. We adopted cERL-FEL undulators as adjustable phase undulator (APU) with fixed gap of 10 mm. During the magnetic measurements of these undulators, we observed the degradation of phase error associated with magnetic row phase. We consider this degradation was due to our magnetic measurement system. We describe the analysis of measured magnetic data and the method for correct the phase error in this report.

1. はじめに

現在、高エネルギー加速器研究機構のエネルギー回 収型ライナック(cERL)において赤外波長域(波長 10 - 20 µm)の自由電子レーザーの開発研究が進んでいる。こ の光源として長さ3mのアンジュレータ(Gap = 10 mm 固 定)を cERL リングインストールして運転が開始されている。 Figure 1 にこの写真を示す。この2台のアンジュレータは、 下側磁石列を長手方向にスライドさせることで光の波長 を制御する adjustable phase undulator (APU)である。これ らのアンジュレータの磁場調整では、真空チャンバーの 垂直方向の開口は約8mmと狭く電子ビームのエネル ギーも 17.5 MeV と低いために電子ビーム輸送に重点を 置いて磁場測定と調整を行った[1,2]。

Figure 1: Photograph of the cERL-FEL undulator.

この結果、得られた電子軌道の変位は十分小さくでき て問題なくビーム輸送に成功したが、そのスペクトル性 能を表す位相エラーが磁石列位相を変えると非常に大 きく変化してしまう現象を経験した。磁場データを解析し た結果、この位相エラーの悪化は磁場測定中のホール 素子の姿勢変化が強く影響していると考えて、その補正 を行ったのでこの詳細を報告する。

2. 位相エラーと磁場測定の結果

アンジュレータ磁場の位相エラーと放射光強度との間 には強い相関があり位相エラーはアンジュレータの磁場 性能を表す重要な指標としてよく使われている。とくに電 子がアンジュレータの各周期を進む際に、アンジュレー タ内での電子の位相と放射光の位相と大きなずれが生 じる場合(位相エラーが大きい場合)、高次光の放射強 度が大幅に損なわれることがある。アンジュレータの各位 置における位相は Eq. (1)で定義されて理想的な場合で は位相は半周期毎にπ だけ進む。

$$\phi(z) = \frac{2\pi}{\lambda} \left\{ \frac{z}{2\gamma^2} + \frac{1}{2} \int_0^z (x'(z)^2 + y'(z)^2) dz \right\}$$
(1)

ここで

$$x'(z) = \frac{e}{mc\gamma} \int_0^z B_y(z') dz'$$
⁽²⁾

$$P'(z) = \frac{e}{mc\gamma} \int_0^z B_x(z') dz'$$
(3)

各半周期位置での理想値からのずれをδで表すと全体 の位相エラーはこの標準偏差で決まり、

$$\sigma_{\phi} = \sqrt{\sum_{n=1}^{2N} \delta_n^2 / (2N)}$$
(4)

今回の cERL-FEL 用アンジュレータの磁場測定の結 果では、U01、U02 ともに位相 ρ をずらすと位相エラーが 大幅に悪化する現象が見られた。どちらも初期位置(ρ = 0 mm)では良好だった位相エラー(5°)が ρ とともに極端 に大きくなるが最終位置(ρ = 12 mm)ではまた元の値に 戻る現象が見られた。U02 での結果を Fig. 2 に示す。

まず、初期位置($\rho = 0 \text{ mm}$)から位相を 90 度($\rho = 12 \text{ mm}$)にずらすと半周期隣の縦磁化磁石がペアとなる。初期位置($\rho = 0 \text{ mm}$)では十分に良かった磁場分布が、対向する磁石ペアが変わることで非常に磁場分布が悪くなるとすれば、90 度($\rho = 12 \text{ mm}$)での B_z の磁場分布性能も大きく損なわれているかと考えた。そこで測定した B_z 磁場をあたかも B_y のように取り扱って仮想的に位相エラーの分布を計算してみた。この結果を Fig. 3 に示す。

[#] kimichika.tsuchiya@kek.jp

Figure 2: Measurement result of the phase error of U02.

Figure 3: Comparison of phase errors. Red line shows phase error of B_y at $\rho = 0$ mm. Blue line shows virtuality phase error of B_z at $\rho = 12$ mm.

これより初期状態で B_y が持っていた磁場分布性能(5 度)が半周期ずれた終端($\rho = 12 \text{ mm}$)でも保たれているように思える。実際、APU(スライド型アンジュレータ)では位相を変えると最初出ていた B_y 磁場が YZ 平面内で回転して、終端では B_z のみとなる。始端と終端で位相エラー分布が似ているため、位相変更に伴い位相エラー分布が激変するのは不自然であるため、途中($\rho = 6 \text{ mm}$)での B_y と B_z の位相エラー分布をFig.4に比較した。

Figure 4 では $B_y \\ < B_z$ の位相エラー分布がきれいに対称的に現れた。この様子は、他の位相位置(ρ =3,9 mm) でも全く同様であった。これは B_y が他より強くなっている ところは B_z が弱く、 B_y が弱い極ではその逆になっている と考えられる。この様な現象を起こす原因として測定中の 素子の位置や傾きが影響を与える可能性が考えられる。 このなかでも測定中の素子の傾きが B_y - B_z 面内でゆっくり 変化することが有力な可能性であると考えている。

仮に素子の傾きがゆっくり変わるとして位相エラーがどう変化するかのシミュレーションを行った。アンジュレータの全長3mにわたって素子が±6mrad回転するとしたときのピーク磁場分布をFig.5に、またその時の位相エラー分布をFig.6に示す。

Figure 4: Comparison of phase error at $\rho = 6$ mm.

Figure 5: Peak magnetic field distribution of every pole with/without angle error of Hall probe.

Figure 6: Phase error distribution with/without angle error of Hall probe.

Figure 6 の位相エラーの位相依存性の形(赤線)は Fig. 2 の実測値の形によく似ている。これより素子の傾き が Phase Error 悪化の原因であるとの思いが強くなったの で以下に、この素子の回転誤差が測定磁場に与える影 響とその補正法を考察した。

PASJ2022 FRP022

3. 位相エラーの補正法

ここでは、Hall 素子の YZ 平面内の回転誤差が位相 エラーに与える影響を考える。 $B_y \ge B_z$ を測定する Hall 素 子が共に高さは y = 0 であるとして、ある位置 z で x 軸の 周りに θ (z)だけ傾いている場合を考える。一般的なスラ イド型アンジュレータ(APU)の磁場[3]は軸上では簡単 になり、 B_y - B_z 平面内の回転誤差をもった素子で測定さ れる磁場は Eq. (5)及び Eq. (6)で表される。

$$B_{y_MES}(z) \approx B_y(z)\cos(\theta(z)) + B_z(z)\sin(\theta(z))$$

= -B₀(z)cos(kz-k\rho/2)
×[cos(k\rho/2)cos(\theta(z)) + sin(k\rho/2)sin(\theta(z))] (5)

$$B_{z_MES}(z) \approx B_z(z)\cos(\theta(z)) - B_y(z)\sin(\theta(z))$$

= -B₀(z)cos(kz - k\rho/2)
×[sin(k\rho/2)cos(\theta(z)) - cos(k\rho/2)sin(\theta(z))] (6))

この Eq. 5 と Eq. 6 には回転誤差 $\theta(z)$ が複雑に入り込ん でくるが全磁場の強さを求めると

$$\langle B(z) \rangle^2 \equiv B_{y_MES} (z)^2 + B_{z_MES} (z)^2$$

$$= B_0 (z)^2 \cos^2 (kz - k\rho/2)$$
(7)

と単純になり回転誤差 θ は消えてくる。このことを使って、

$$B_{y}(z) \approx -\frac{B_{y_{-MES}}(z)}{\left|B_{y_{-MES}}(z)\right|} \langle B(z) \rangle \cos(k\rho/2) \qquad (8)$$

を考えて Eq. 8 を位相エラーの計算に使う B_y として定義 すれば、測定値と位相量のみを用いて計算することがで きる。これより各位相 ρ に対して磁場 B_y , B_z を測定し、 Eq. 8 を用いて位相エラーを再計算して Fig. 7 に比較し た。

この結果では、位相を変えた全域で 5 度程度の位相 エラーを保っておりもっともらしい結果を得た。しかしこれ は位相エラーへの影響を全て素子の回転誤差に押し込 めたままなので、シミュレーションで仮定した± 6 mrad = ±0.3°の傾きが妥当かどうかも検討する必要がある。これ を確認するために磁場測定中測定中の素子の傾きをモ ニターするための準備を現在行っている。

Figure 7: Phase error distribution with/without correction.

参考文献

- [1] K. Tsuchiya et al., PASJ2019, FRPI018 (2019).
- [2] K. Tsuchiya et al., PASJ2020, FRPP59 (2020).
- [3] R. Carr, Nucl. Instr. and Meth. A306, 391 (1991).