KEK 電子陽電子入射器におけるパルス電磁石

PULSED MAGNETS AT KEK ELECTRON/POSITRON INJECTOR LINAC

横山和枝[#]), 榎本嘉範, 柿原和久, 紙谷琢哉, 染谷宏彦, 田中窓香, 夏井拓也 Kazue Yokoyama[#]), Yoshinori Enomoto, Kazuhisa Kakihara, Takuya Kamitani, Hirohiko Someya, Madoka Tanaka, Takuya Natsui High Energy Accelerator Research Organization (KEK/SOKENDAI)

Abstract

Many devices have been developed in the KEK Electron/Positron Injector Linac to achieve simultaneous top-up injection of a high-quality low emittance with a high bunch charge beams into five independent rings. Since each ring requires different injection beam energy, pulsed magnets have been installed for optimizing beams which are transported pulse-by-pulse at 50 Hz. This paper summarizes the design of the pulsed magnets at the Linac for the upgrade plan for the SuperKEKB project.

1. はじめに

KEK 電子陽電子入射器(Linac)は、2つの放射光施設 (PF、PF-AR)と物理実験施設 SuperKEKB(電子・陽電子 衝突型加速器 HER/LER)の4つのリングにビームを供給 している。各リングの要求するビーム仕様は各々異なっ ているので、各々に独立した専用入射器を作ることが理 想的であるが、Linac はこの役目を1つの入射器で達成 できるように、日々、改良を重ねている。Linac は50 Hzの 高周波源を使用したビーム加速装置であるため、20 ms 毎にパルスビームを生成することが可能な装置である。 各リングが要求するビーム仕様を満たし且つ安定した同 時トップアップ入射ができるように、さまざまな高精度の パルス動作機器を開発している[1, 2]。本稿では、現在 運用しているパルス電磁石のまとめと今後製作予定のパ ルス四極電磁石の設計について報告する。

2. Linac の構成

Linac の構成をFig. 1に示す。電子源は、陽電子生成 のための高電荷電子ビーム生成用の熱電子銃と低エ ミッタンスビーム用のフォトカソード RF 電子銃の 2 種 類の電子銃からなり、その後の加速と輸送系は、Sector A、Sector B、180 度向きを変える J-ARC、Sector C、 Sector 1~5 から構成される。Sector A では各々の電子銃 からのビームラインを 24 度で1つに合流し、途中 Sector 1 の中盤に陽電子生成ターゲットが設置されており、 Sector 2 と Sector 3 の間に陽電子を低エミッタンス化す るための ダンピングリング(DR) がある。2m加速管4本 の1ユニットが基本構成で、1つのセクターは8ユニット から成る。イレギュラーなところもあるが、DR上流は1ユ ニット毎に、DR下流は2ユニット毎に収束系電磁石が置 かれている。四極電磁石は約250台、ステアリング電磁 石は約230台使用しており、その内パルス電磁石は各々 32台、71台である。上流から現在使用しているパルス電 磁石をTable 1とTable 2に示す。

3. Linac のパルス電磁石

入射ビームを各リングへ振り分けるベンド以外で、 Linac で最初に導入されたパルス電磁石は陽電子生成 標的前に設置したパルスステアリング電磁石である[3]。 KEKB の時代には、各リングの蓄積電流を保つために 連続的に少しずつビームを継ぎ足すようなトップアップ入 射の方法であった。トップアップ入射を実現するには、 Linac での電子入射と陽電子入射を切り替える際の陽電 子生成標的のビームラインへの出し入れにかかる時間 (約2秒)が問題であった。そこで、標的は固定したままで、 標的のすぐ横に電子ビームが通過できる小さな孔を設け て、標的前のパルスステアリング電磁石で軌道を電子入 射用ビームと陽電子生成用の電子ビームに振り分けるこ とにした。通常の DC 電磁石と DC 電源では設定を 20 ms 毎に変更するようにはできていないため、50 Hz の

Figure 1: Overview of the KEK Electron/Positron Injector Linac.

[#] kazue.yokoyama@kek.jp

パルス毎に軌道を切り替えられるようなパルスステアリン グ電磁石のシステムを構築した。各リングのエネルギー 仕様(2.5 GeV~7 GeV)に対しては、Linac 後半部分での 高周波加速位相を操作した加減速で対応し、ビーム軌 道を調整するためにパルスステアリング電磁石を増設し た。

SuperKEKB では、ビームのオプティクス及び軌道をパ ルス毎に柔軟に切り替えることで、それぞれのリングに入 射するビームの高品質化と安定化を可能な限り同時に 達成することを目指している。入射先毎に、異なる電荷 量とエネルギーのビームを パルス毎に切り替えて入射 するため、ビームを偏向、収束する磁場の強さもパルス 毎に変える必要がある。従来の共通磁場を用いた DC 電 磁石のビーム輸送方式では、低エミッタンスを保持したま ま各リングの要求するビームを加速輸送し、同時入射を 達成することは困難である。そのため、パルス電磁石を 導入して、各ビームモードに最適なオプティクスでビーム の加速輸送を行うことで良質なビームの実現を目指して いる。DR で低エミッタンス化された陽電子ビームが電子 ビームと合流する下流の Sector 3 以降では、エミッタンス 増大を抑えるために、オプティクスの検討結果から、加速 ユニット間に設置されていた FODO 型収束系の DC 四 極電磁石をD とF をペアで置くDoublet 型収束系に変 更することが提案された。Doublet 型収束系の構成で、 パルス電磁石の設計及びパルス電源の開発が 2014 年 頃から開始された[4]。Doublet 型収束系でのビームコ ミッショングをスタートさせるため、既存の Tripretの DC 電 磁石の配線を、Doublet で通電できるように 2015 年に配 線変更を行った。Linac の構成は、ユニットスタイルをとっ ているため、パルス電磁石に関しても共通化したユニット スタイルの構成であることが、製作や設置、および管理 がしやすいというメリットがあり、4 台のパルス電磁石が 1 つのセットととして共通の架台上に設置する構成にした (13 ユニット)。各加速ユニット間にある DC 電磁石用のス ペースは、共通しておおよそ 1400 mm であった。そのた め、設置可能な場所の制約の中で、四極電磁石2台とス テアリング電磁石2台の大きさを決める必要があった。ま た、パルス電源の開発においてのインダクタンスの設計 範囲内で、オプティクス計算から要求された磁場を満た す必要があるため、パルス電磁石の設計パラメータにも 制限が出てくる。磁極間距離は必要なビームサイズから 出来る限り狭くし、コイルの巻き数は電源のインダクタン スと電流値に合わせて必要な磁場強度を十分満たすよ うに設計仕様を決めた。パルス四極電磁石システムの実 用試験運転は 2015 年頃から開始された[5]。陽電子標 的の上流で磁場強度をパルス毎に切り替え、電子ビー ムをパルス毎に期待通りに変化させることを確認した。 2017 年に、Sector 3 以降の FODO 系ユニットの設置とと もに、陽電子キャプチャーセクションより下流の収束系に おいても、陽電子ビームと電子ビームの軌道をパルス毎 に独立に調整するためにパルスステアリング電磁石が増 設された。入射部 Sector A や J-ARC 部の DC 電磁石の 一部もパルス電磁石に置き換え、電子入射用と陽電子 生成用 2 台の各々の電子銃に合わせたマッチングをと れるようにした。今後もパルス電磁石を増設して、各リン グへの入射ビームオプティクスマッチングをパルス毎に 独立により柔軟に切り替えられるように検討を進めている。 又、1 パルス 2 バンチ運転に関して、高速キッカーを導入して 96 ns 離れた 2 バンチ目の軌道補正システムを開発している。尚、Sector A 合流部で使用しているパルス ベンドについては、すでに報告があったので本報告では 割愛し、パルスステアリング電磁石とパルス四極電磁石 について報告する[6]。

4. パルス電磁石のデザイン

Linac では、パルス電磁石を導入するために設置場所 を新たに設けることはできないため、既存の DC 電磁石 の置換えや空いているスペースを候補にして、長期 シャットダウン期間を利用しながら段階的に増設を進め ている。パルス四極電磁石に関しては、ビームオプティク スのマッチングに重要な箇所を優先して設置を進めた [7]。ビームサイズについては運転時のビームで実験的 に評価することも行った。ダクト内径の範囲で磁場の一 様性を良くするために、電磁石の磁極端にシムを設けた。 シムの最適化の計算には CST を用いた。電磁石はパル ス励磁されるので鉄心中の渦電流を防ぐため 0.5 mm 厚 の鋼板を積層して製作した。鋼板 は精密抜型を使用し て一枚ずつ打ち抜かれ、個々に絶縁されており、積層治 具上で積み重ねた後に、側板をつけてボルト締め後に 外周を溶接する方式である。コイルの冷却方式は空冷で ある。パルス電源は水冷式で、励磁電流は台形波に近 いパルス波形で、立ち上がり立下りが約2ms、フラットトッ プ約1msである。

4.1 パルスステアリング電磁石

Table 1 にパルスステアリング電磁石の仕様を示す。現 在約 70 台のパルスステアリングが設置されている。磁場 仕様別には電磁石タイプが 7 種類あるが、パルス電源は 2 種類で運用している。電源の仕様に合わせて、電磁石 のインダクタンス仕様も主に 2 種類(3 mH、30 mH)で設 計した。現在は、インダクタンスの高い設計仕様であった パルスステアリング電磁石については、直列接続してい たコイルを並列化し、励磁電流を下げるなどして新規に 開発したパルス電源で対応できる範囲(10 mH)で使用し ている[8]。二極電磁石のインダクタンス値 L は概ね次式 で求められる[9]。

 $L \cong \mu_0 N^2 A/g$ (1) ここで、 μ_0 :真空中の透磁率(4 π ×10⁻⁷[V·s/A·m])、N:コイ ルの巻数、g:磁極間距離[m]、l:磁極長[m]、w:磁極幅 [m]、A~(w+1.2g)(l+g)である。

Linac で使用しているパルスステアリング電磁石は Fig. 2 に示すような H 型の二極電磁石である。磁極のシムの 形状は角型(高さ:shi、横:sf)である。PX_17_2 タイプのモ デルを用いて、シムを付けた場合と付けない場合の計算 結果を Fig. 3 に示す。シムを設けない場合は、BL(磁場 強度と有効長の積)の一様性は中心から遠ざかるにつれ 悪くなる。BL の一様性が必要なビーム領域(x \leq 15)で 10⁴ 程度になるようにシムの形状を最適化した。また、 A1_M タイプは、設置場所の制限とコストダウンの観点か ら、この 17_2 タイプの積層鋼板の抜型を再利用し、磁極 長を変えて製作した。磁極長を変えた場合の BL の一様 性も Fig. 3 に示す。磁極長 80 mm で最適化したシム形

状だが、磁極長 50 mm で 10⁻³程度の一様性が確保され ている。また、Sector A の後半から Sector 2 までの領域 は、R0_01タイプの積層鋼板の抜型を再利用して追加製 作した。DC 四極電磁石 3 台が並ぶ Triplet 光学系を Double 化し、中央の DC 四極電磁石部にパルスステアリ ングを置いてパルス電磁石の増設を行った(Fig. 4)。

Туре	A1_M	R0_01	13_2	18_4	16_5	17_2	32_4
(PX/PY-**-**)	(*17_2)	(A4_4)					
ダクト内径/外径[mm]	30.7/34	30/37	13.2/15.6	13.2/15.6	60/70	30/37	14.9/17.3
	SUS	Al ₂ O ₃	24.85/27.25	24.85/27.25	Al ₂ O ₃	Al ₂ O ₃	SUS
			楕円 Al ₂ O ₃	楕円 Al ₂ O ₃			
磁極間距離[mm]	39	44	35	35	72	39	20
磁極幅[mm]	80	70	150	80	140	80	60
磁極長[mm]	50	100	150	150	150	80	80
有効長[mm]	91.8	141.5	192.3	190.7	211.5	120.3	107.2
最大磁場強度[T]	0.022	0.07	0.071	0.077	0.009	0.023	0.044
起磁力[A.turn]	360	1230	1000	1080	260	360	360
最大励磁電流[A]	10	10	10	10	10	10	10
コイル巻き数/pole	36	123	100	108	26	36	36
コイル銅線サイズ[mm]	1×5DNC	1×4PEW	1×6	2×5	2×5DNC	1×5DNC	1×5DNC
抵抗[mm]	0.113	0.57	0.53	0.26	0.075	0.13	0.12
インダクタンス [mH]@1[kH]	1.95	29.5	57	38	2.5	2.6	2.9
インダクタンス[mH]	1.89	30.56	51.01	37.81	2.37	2.52	2.74
公式 (*並列化)		*7.64	*12.75	*9.45			
シム形状(shi/sf)	3.4/8	3.4/7	4/15	1.9/8	5.9/14	3.4/8	0.7/12
設置台数(水平/垂直)	2/2	4/4	4/2	3/4	1/1	4/4	13/13
		(5/5)					
設置年	2018.09	2019.01	2007	2008	2017.09	2017.09	2017.09
		(2019.09 コイル並列化)	と) (2019.09 コイル (2019.09		レイル (2018.09)		
		(2021.01)	並列化)	並列化)			
設置場所	Α	J-arc	1 (e ⁺ target 前),	1 (e ⁺ target 前),	1 (e ⁺ target	1 (e ⁺ target	3~5
Sector		(A, C, 2)	1~2	1~2	後)	後)~2	

	Table	1: Ty	pe of	Pulsed	Steering	Magnets
--	-------	-------	-------	--------	----------	---------

Figure 2: Design of the pulsed steering magnet with a shim-shaped poles.

Figure 3: BL uniformity of pulsed steering with and without a shimshaped poles and with shorter yoke length.

Figure 4: Pulsed steering between DC quadrupole magnets at Sector 2.

4.2 パルス四極電磁石

Table 2 にパルス四極電磁石の仕様を示す。現在 32 台のパルス四極電磁石が設置されており、新たに 12 台 の増設を進めている。磁場仕様別には電磁石タイプが 4 種類で、パルス電源は 2 種類で運用することにした。パ ルス電源の仕様に合わせて、電磁石のインダクタンス仕 様も2 種類(1mH、1.5mH)にした。四極電磁石のインダク タンス値 L は概ね次式で求められる。

 $L \cong 8\pi\mu_0 N^2 l_m / \sqrt{d/R}$ (2) ここで、 μ_0 :真空中の透磁率($4\pi \times 10^{-7}$ [V·s/A·m])、N:コイ ルの巻数、R:ボア半径[m]、l:磁極長[m]、d:コイル内側 間中心距離[m]、 $l_m \sim (l+2/3R)$ である。

既存の架台に設置する必要があるため、電磁石中心 と架台面及び磁極長に制限がある中で、オプティクスと 電源の要求に見合うように設計する必要があり、磁極幅

Table 2: Type of Pulsed Quadrupole Magnets

Туре	PM_A1_M	IPM_R0_01	PM_17_14	PM_32_4
ダクト内径/ 外径[mm]	30/37 Al ₂ O ₃	35/42 Al ₂ O ₃	24/30 Al ₂ O ₃	13/17 Al ₂ O ₃
ボア直径 [mm]	39	44	32	20
磁極長[mm]	100	300	160	200
有効長[mm]	122.35	-	-	212.5
磁場勾配 [T/m]	20	20	20	60
起磁力 [A.turn]	3300	4200	2400	2640
励磁電流[A]	330	600	300	330
コイル巻き数	10	7	8	8
インダクタン ス[mH]	1	1.5	1	1
設置台数	4	8	4	28
設置年	2018.10	2023.09 予定	2023.09 予定	2017.09
設置場所	А	J-arc	1 (e+ target	1 (e+ target
Sector			後)~2	前), 3~5

は十分に広げられない。Figure 5 のように双曲線のあると ころから接線を伸ばし、鋼板を精度よく揃えるため基準 になる積層面となるフラット部分(5 mm)を磁極に設けた。 パルス四極電磁石についても CST を用いて磁極形状の 最適化を行った(Fig. 6)。PM A1 Mタイプのモデルを用 いて、シムを付けた場合と付けない場合の計算結果を Fig. 7 に示す。シムを設けない場合は、B'L の一様性は 中心から遠ざかるにつれ悪くなる。B'L の一様性が必要 なビーム領域(x ≤15)で 10-3 以下になるように磁極形状 の最適化を行った。J-ARC 部に増設予定のパルス四極 電磁石 PM R0 01 は、ボア径が大きく、既存の1 mH タ イプのパルス電源では要求磁場を満たせないため、イン ダクタンスと電流値を上げて電源開発を行っている。これ に伴い、2mHタイプの四極電磁石を試作している。試作 機の鉄心は、溶接構造ではなく、エポキシ樹脂による接 着法の製造を採用した。パルス電磁石製法について、 溶接法と接着法の比較は、これから評価する予定である。

パルス四極電磁石の磁場測定のセットアップをFig.8

Figure 5: Shim-shaped on poles of a quadrupole pulsed magnet.

Figure 6: Quadrupole pulsed magnet design with a shim-shaped poles.

Figure 7: B'L uniformity of quadrupole pulsed magnet with and without a shim-shaped poles.

Proceedings of the 19th Annual Meeting of Particle Accelerator Society of Japan October 18 - 21, 2022, Online (Kyushu University)

PASJ2022 FRP044

Figure 8: Magnetic field measurement system.

に、測定用のサーチコイルを Fig. 9 に示す。四極電磁石 の磁場勾配においては、一般的に、1つのサーチコイル で磁場を測定すると、磁場中心付近になるほど信号が小 さくなり、精度が悪くなる。そこで、二つのサーチコイルを 並べ、検出信号レベルを同じにして信号の差をとること により、直接磁場勾配を測定する方法をとった。プローブ はG10材の支持アームに取り付けられ、磁場測定ステー ジで、X.Y.Z への移動と回転が可能である。プローブは、 外径 8 mm、内径 7 mm の GFRP(ガラスエポキシ材)のパ イプの中に、2 つのサーチコイルを 1.56 mm 間隔にセッ トしたものである。サーチコイルのワイヤーは 50 um ホル マル線で、1.5 mm 厚のセラミック製のボビンに 50 ターン 巻いた。それぞれの面積は、磁場校正用電磁石を用い て求め、各々の面積はコイル1が726.1×10-6m²、コイル 2 が 729.5×10⁻⁶ m² である。パルス励磁したパルス四極 電磁石の中で、ビーム通過が想定されるタイミングに サーチコイルに発生する電圧値を面積で割ることで磁束 密度が求められる。ノイズを低減するために、サーチコイ ル電圧波形をオシロスコープで平均化し、2 つのサーチ コイルの面積差による影響を打ち消すため0度と180度 で測定した後、データ(2 点間の磁束密度の差)の和を とって半分にすることにより磁場勾配を求めた。実際の ビーム輸送運転では、パルス毎に異なる電流とタイミング で励磁されるため、運転状態に近い磁場特性を調べるこ とを検討中である。

まとめ 5.

Linac では、パルス毎に仕様(電荷量とエネルギー)が 異なるビーム輸送の高度化のために、パルスステアリン グ電磁石とパルス四極電磁石を導入した。設置場所を 新たに設けることはできないため、既存の DC 電磁石を パルス化することや空いているスペースを候補にして、 段階的に増設を進めて行った。DC 電磁石の単なる置き 換えでパルス化した際には、電磁石とパルス電源への仕 様要求が過大となる為、オプティクス検討やビームスタ ディの結果に基づいて、磁場値やアパーチャー値を問 題の無い範囲で詰めることにより、現実的な仕様値を決 め、設計を進めている。

Figure 9: Structure of magnetic field measurement probe.

参考文献

- [1] K. Furukawa et al., "KEK 電子陽電子入射器の SuperKEKB 入射性能向上計画", Proc. the 18th Annual Meeting of Particle Accelerator Society of Japan August 9 -12, 2021, QST-Takasaki Online, Japan, pp. 320-324; https://www.pasj.jp/web_publish/pasj2021/proceedings/P DF/MOP0/MOP033.pdf
- [2] Y. Enomoto et al., "Pulse-to-pulse Beam Modulation for 4 Storage Rings with 64 Pulsed Magnets", in Proc. LINAC2018, Beijing, China, 2018, pp.609-614.; https://doi.org/10.18429/JACoW-LINAC2018-WE1A06
- Kamitani et al., "PULSE-TO-PULSE MODE [3] T. SWITCHING OF KEKB INJECTOR LINAC", Proc. of LINAC08, Victoria, BC, Canada, pp. 407-409; https://accelconf.web.cern.ch/linac08/papers/tup010.pdf
- Y. Enomoto, "パルスマグネット", OHO'19, Tsukuba, Sept. 10-13, 2019, pp. 4-1-4-21; http://accwww2.kek.jp/ [4] oho/OHOtxt/OHO-2019/04_Enomoto_Yoshinori.pdf
- [5] K. Furukawa et al., "KEK 7-GeV 電子陽電子入射 器と複数の蓄積リングへの入射運転 (II)", Pro. the 14th Annual Meeting of Particle Accelerator Society of Japan, Sapporo Japan, August 1-3, 2017, pp. 300-303; https://www.pasj.jp/web_publish/pasj2017/proceedings/P DF/TUP0/TUP006.pdf
- [6] T. Kamitani et al., "KEK 電子陽電子線形加速器 24 度 ビーム合流ラインのパルス偏向電磁石の設計", Proc. of the 16th Annual Meeting of Particle Accelerator Society of Japan, Kyoto, Japan, July 31 - August 3, 2019, pp. 970-974; https://www.pasj.jp/web_publish/pasj2019/proceedings/P DF/FRPH/FRPH034.pdf
- [7] Y. Seimiya et al., "KEK 電子陽電子入射器におけるパル ス電磁石導入の光学的検討", Proc. of the 18th Annual Meeting of Particle Accelerator Society of Japan, QST-Takasaki Online, Japan, August 9 - 12, 2021, pp. 511-513; https://www.pasj.jp/web_publish/pasj2021/proceedings/P DF/TUP0/TUP033.pdf
- Y. Enomoto, "パルスステアリング磁石用バイポーラ電源". [8] Proc. the 18th Annual Meeting of Particle Accelerator Society of Japan, QST-Takasaki Online, Japan, August 9 -12, 2021, pp. 511-513; https://www.pasj.jp/web_publish/pasj2021/proceedings/P DF/MOP0/MOP012.pdf
- [9] Practical Definitions & Formulae for Normal Conducting Magnets (EDMS1162401 Internal note2011 18 p.9)