THOA05

交叉型アンジュレータを用いた THz域偏光可変超放射発生の研究

<u>齊藤 寛峻</u>(高エネルギー加速器研究機構) 武藤 俊哉, 柏木 茂, 日出 富士雄, 濱 広幸(東北大学電子光理学研究センター)

> 第19回加速器学会年会 オンライン 2022年10月20日

研究背景 THz放射

THz光源(周波数0.1-10 THz、波長3000-30 μm)

- 従来型光源が利用不可 → 近年は多くの光源が登場
- ・加速器ベース光源 → 強度にアドバンテージ
 超放射(コヒーレントアンジュレータ放射)

波長より十分短いバンチ長≲100 fs (30 µm)のビームを利用

■ 偏光の利用

• 応用例: 円二色性分光(キラルな生体分子の構造解析)

実験例 光源: UCSBのTHz FEL 周波数: 1.53, 1.98, 2.52 THz 平均パワー: 数mW

J. Xu et al., Proc. of SPIE 5268, pp.19-26 (2004).

・ 偏光素子の制限(波長板製作が困難)
 → THz域の偏光利用には制約

研究背景 加速器ベースの偏光可変光源

磁石列駆動式のアンジュレータ

- 磁場分布を変化
- THz超放射光源でも採用(SINAP)
- ✓ 偏光切替速度が遅い(<0.1 Hz)</p>

Elettra Sincrotrone Trieste. APPLE-II型 https://www.elettra.trieste.it/lightsources/fermi/fermi-machine/felundulator.html.

■ 交叉型アンジュレータ

- 2つのアンジュレータ放射を重畳
- THz域では応用例なし(可視光~紫外線領域のみ)
- ✓ 高速偏光切替可能(>10 Hz)

超放射 × 交叉型アンジュレータ

K.-J. Kim, LBL Report LBL-18313 (1984).

→ 強度面・偏光面ともメリットのあるTHz光源が実現できる?

研究目的

<u>交叉型アンジュレータを用いた偏光可変THz超放射光源の検討</u>

従来の交叉型アンジュレータ光源との相違点

- 放射周波数
- ~100 fsの超短バンチ長維持の必要性

➡ 最光

最適な光源システムの構成や 光源としての実用性は自明でない

(1)THz超放射に適した光源システムを明らかにする

- 移相器
 - 位相調整法
 - バンチ長調整の可能な電子ビームライン

(2) 放射特性(実現可能な放射強度、偏光度)を明らかにする

- 偏光度を決める要因
- 有効放射強度(十分な偏光度が得られる条件下での強度)

(1) 光源システム 交叉型アンジュレータの原理

交叉型アンジュレータ

直交する直線偏光の重ね合わせによる偏光操作

位相調整

第1の放射の光路長調整による位相操作を採用

- スリッページの補正 → 2つの放射の時間的な重畳
- 移相器でのバンチ長調整(超放射特有、後述)
- 高速偏光切替

5

移相器の概念図

(1) 光源システム 移相器の電子ビームラインの要件

✓ 超放射の強度: バンチ長/放射波長に指数関数的に依存
 → 各アンジュレータでのバンチ長を揃える必要あり

アンジュレータ内でのバンチ伸長

スリッページ長(電子と光の縦方向ずれ) エネルギー偏差 $\delta \equiv \frac{\Delta \gamma}{\gamma_0}$ による電子の縦方向ずれ $N\lambda(\gamma) = N \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} \right)$ $\Delta z = -N[\lambda(\gamma_0 + \Delta \gamma) - \lambda(\gamma_0)] \approx 2N\delta \cdot \lambda(\gamma_0)$

> → 波長に対して無視できない($2N\delta$ 倍)縦方向分散が発生 $R_{56} = 2N\lambda(\gamma_0)$ → アンジュレータ間でバンチ長補正が必要

移相器の電子ビームラインの要件

- 十分な角度でのビームの偏向(光輸送ラインのスペース確保)
- バンチ長の補正
 - 1台目のアンジュレータのR₅₆補正
 - 移相器で発生するバンチ伸長の抑制

N:周期数	
λ:共鳴波長	
$\lambda_{\rm u}$:周期長	
K:偏向定数	
γ:電子ビームエネルギー	

6

(1) 光源システム 交叉型アンジュレータシステムの例

東北大ELPHの試験加速器t-ACTSでの実験を想定した設計(詳細は第16回年会発表THOI10)

アンジュレータパラメータ

Magnet array	Halbach type
Block dimension (x, y, z)	70 mm × 23 mm × 20 mm
Period length $\lambda_{ m u}$	80 mm
Number of periods N	7
Magnet material	NdFeB ($B_{\rm r} = 1.22 {\rm T}$)
Gap	33 mm
Peak magnetic field	0.471 T (K = 3.51)
Fundamental frequency	1.93 THz (155 μ m) ($E = 22$ MeV)

电ナレームハファーク	電子	ビー	41	ペラン	く—ク
------------	----	----	----	-----	-----

RF frequency	2856 MHz
Macropulse duration	2 µs
Beam energy	22 MeV
Energy spread σ_δ	1% (rms)
Normalized emittance (x, y)	3, 6 mm∙mrad
Bunch length σ_t	80 fs (rms)
Bunch charge Q	20 pC

(2) 放射特性(偏光) 偏光度を決める要因

- 角度依存性に関わる量
 - 光源間距離*L*p
 - ・ 周期数N(角度広がり σ_{θ}) (波長(ビームエネルギー、磁場)には非依存)
- 角度依存性改善の限界

$$|\Delta \psi(\theta_{\rm n}=1)| = 2\pi \frac{1+L_{\rm p}/L_{\rm u}}{4+1/N} > \frac{2}{5}\pi$$

光源点の違いによる2つの放射の波面のずれ

(詳細は第18回年会発表THOA04)

(2)放射特性(偏光) 典型的な偏光特性

多粒子放射シミュレーションにより得られた設計光源の円偏光度

- 放射の角度広がりの範囲内で偏光状態が大きく変化
- ・軸上では高い偏光度
- ✓ 角度制限により高い偏光度の実現は可能

(2)放射特性(強度) 設計光源の有効強度

角度制限下の放射強度(<u>有効強度</u>)を評価		Designed source (t-ACTS) (simulation)	SINAP (measurement)
	電子ビーム		
円偏光度0.9の角度制限に対応する強度	バンチ長	80 fs	250 fs
	ビームエネルギー	22 MeV	26 MeV
	電荷量	20 pC	68 pC
	ミクロパルス繰り返し	2856 MHz	2856 MHz
SINAP	マクロパルス長	2 μs	3.6 μs
• APPLE-II型アンジュレータを採用	マクロパルス繰り返し	10 Hz	50 Hz
 既存の強度最大のTHz超放射光源 	アンジュレータ		
J. Zhang et al., Nucl. Instruments Methods Phys. Res. Sect. Accel.	周期長	80 mm	100 mm
Spectrometers Detect. Assoc. Equip. 693, pp. 23-25 (2012).	周期数	7x2	5
	放射周波数	1.9 THz	0.8 THz
	放射特性		
円二色性分光実験強度: $P_a \sim 1 \text{ mW}$	パルスエネルギー (total: 角度制限なし)	4.4 nJ/bunch (total 0.29 μJ/bunch)	2.4 μJ/bunch
<i>P</i> _p :ピークパワー	<mark>放射パワー(<i>P</i>p/Pa</mark>) (total: 角度制限なし)	13 W/ <mark>0.25 mW</mark> (total 0.81 kW/16 mW)	6.9 kW/1.2 W
<i>P</i> a:平均パワー	偏光	可変(高速切替可)	可変(高速切替不可)

(2)放射特性(強度) 有効強度の改善

(2)放射特性(強度) 達成可能な有効強度

光源パラメータ例

- ・ビームエネルギー広がり $\sigma_{\delta} = 0.23\%$ (t-ACTSのシミュレーション値)
- アンジュレータ周期数 N = 30
- ・ビーム電流 (SINAPのパラメータ)
 - 電荷量 68 pC
 - 電子ビームマクロパルス長 3.6 µs
 - 電子ビーム繰り返し 50 Hz

- ・円二色性分光実験強度(~1 mW)より十分大きい
- 多くの非加速器光源(≤数百mW)より大きい

実用上十分に高い有効強度が達成可能

まとめ

交叉型アンジュレータによる偏光可変THz超放射光源を新たに検討

■ THz超放射に適した光源システム

- 放射の光路長調整による位相操作
- ・第1アンジュレータによるバンチ伸長補正可能な移相器 → 各放射強度の一致
 移相器電子ビームライン例: R₅₆可変トリプルベンド

■ 放射特性

- 偏光特性
 - ・ 光源点の異なる2つの放射の波面のずれに起因する強い観測角度依存性
 - ・ 高い偏光度は実現可能(角度制限が必要)

● 有効放射強度

- ・ 全放射強度に対し数%~10%程度(円偏光度0.9の角度制限下)
- 達成可能強度 ≥ 100 mW(平均) > 多くの非加速器光源、円二色性実験

実用的な偏光可変THz光源が実現可能