PASJ2022 TUP040

京都大学 FFAG 加速器を用いた加速器駆動型核変換システム (ADS)用核データの実験的研究

EXPERIMENTAL STUDY OF NUCLEAR DATA FOR ACCELERATOR-DRIVEN TRANSMUTATION SYSTEM (ADS) USING KYOTO UNIVERSITY FFAG ACCELERATOR

岩元大樹^{†,A,B)},明午伸一郎^{*,A)},中野敬太^{A)},佐藤大樹^{B)},岩元洋介^{B)},杉原健太^{C,D)},石禎浩^{E)},上杉智教^{E)}, 栗山靖敏^{E)},八島浩^{E)},岡部晃大^{A)},西尾勝久^{F)},牧井宏之^{F)},廣瀬健太郎^{F)},Orlandi Riccardo^{F)}, 洲嵜ふみ^{F)},大泉昭人^{B)},塚田和明^{F)},前川藤夫^{A)},森義治^{E)},

Hiroki Iwamoto *, ^{A)}, Shin-ichiro Meigo [†], ^{A,B)}, Keita Nakano ^{A)}, Daiki Satoh ^{B)}, Yosuke Iwamoto ^{B)},

Kenta Sugihara ^{C,D)}, Yoshihiro Ishi^{E)}, Tomonori Uesugi^{E)}, Yasutoshi Kuriyama^{E)}, Hiroshi Yashima^{E)},

Kota Okabe^{A)}, Katsuhisa Nishio^{F)}, Hiroyuki Makii^{F)}, Kentaro Hirose^{F)}, Riccardo Orlandi^{F)},

Fumi Suzaki^{F)}, Akito Oizumi^{B)}, Kazuaki Tsukada^{F)}, Fujio Maekawa^{A)}, Yoshiharu Mori^{E)},

^{A)} J-PARC Center, Japan Atomic Energy Agency

^{B)} Nuclear Science and Engineering Center, Japan Atomic Energy Agency

^{C)} High Energy Accelerator Research Organization

^{D)} The Graduate University for Advanced Studies, SOKENDAI

E) Institute for Integrated Radiation and Nuclear Science, Kyoto University

F) Advanced Science Research Center, Japan Atomic Energy Agency

Abstract

For the research and development of accelerator-driven systems (ADSs) and fundamental ADS reactor physics research using the Kyoto University Critical Assembly, we are conducting experiments on nuclear data (i.e., thick-target neutron yield (TTNY), neutron production double-differential cross section (DDX), and nuclear data on high-energy fission) using the fixed-field alternating accelerator at Kyoto University. This paper presents the background of our experimental program and an overview of the TTNY and DDX measruements.

1. はじめに

原子力発電所の使用済み燃料は、数万年という長期間 にわたって放射性毒性を持つ。我が国ではエネルギー資 源の有効利用の観点から、これを再処理してプルトニウ ム(Pu)やウラン(U)を回収し、燃料として再利用す ることを基本方針としている。再処理の過程で生成され る高レベル放射性廃液はガラス固化体として地下数百 メートルの安定な岩盤地層中に閉じ込め、隔離する計画 であるが、合理的に達成可能な限り高レベル放射性廃棄 物(HLW: High-Level Waste)の毒性を低減し、地層処分 の負担軽減を図っていくことは社会的意義を持つ。この 打開策の一つとして加速器駆動核変換システム(ADS: Accelerator-Driven System)が注目され、世界各国で研 究開発が行なわれている[1]。

Figure 1 に、日本原子力研究開発機構(以下、原子力 機構という)が提案する ADS の概念を示す。このシス テムは、1.5 GeV の大強度陽子加速器と未臨界炉心を組 み合わせた複合原子炉システムであり、炉心を未臨界に 保ったまま核変換を効率的に行なうことができる。炉心 には HLW のなかでも放射性毒性が特に強いネプツニウ ム (Np) やアメリシウム (Am) などのマイナーアクチノ イド (MA: Minor Actinoid) を含む核燃料が装荷され、そ の周囲は液体の鉛ビスマス共晶体(LBE: Lead-Bismuth Eutectic)合金で満たされる。LBE は、運転中に核燃料 から発生した熱を取り出す冷却材として使用されるとと もに、高エネルギー陽子による核反応(核破砕反応)で 発生する核破砕中性子を炉心に供給する標的あるいは核 破砕中性子源としての役割を果たす。

Figure 1: Concept of ADS proposed by JAEA.

* iwamoto.hiroki@jaea.go.jp

† meigo.shinichiro@jaea.go.jp

ADS は、1 基あたりに原子炉 10 基から生じる MA を 潜在的放射性毒性の弱い核種に変換する。Figure 2 に、 放射性廃棄物の潜在的放射性毒性の時間的ふるまい [2] を示す。使用済み燃料のままでは天然ウランと同程度に なるのがおよそ 10 万年も必要とされるところが、廃棄 物から Pu と U を回収し、さらに潜在的放射性毒性の高 い MA を分離して ADS で燃焼させると、その毒性を数 百年に短縮でき、負の遺産の問題解決に大きく貢献でき ると期待される。

Figure 2: Reduction of potential radiotoxicity of spent fuel by ADS (partitioning and transmutation) technology, plotted based on Ref. [2].

核破砕中性子を用いる ADS の研究開発で重要となる のが、核破砕反応を記述する核反応モデルの高度化であ る。特に、核反応モデル計算によって得られる核破砕中 性子の収量ならびにそのエネルギー分布(スペクトル) や角度分布は、ADS の核変換効率や陽子ビーム電流な どの核的性能を評価するうえで必須の情報となる。さら に、陽子入射領域と炉心領域の境界を形成するビーム窓 には、高エネルギー陽子の照射を受けて材料内部にヘリ ウムや水素などのガスが生じる。熱的に厳しい条件に晒 されるビーム窓のガス生成と照射損傷量を精度良く予測 することは、設計上その性能と健全性を確保するために 重要である。この他にも、核破砕標的や構成材料の誘導 放射能・放射性核種の生成、中性子遮蔽体の遮蔽性能を 精度良く評価する必要があり、その基礎的な過程を記述 する核反応モデルが果たす役割は極めて大きい。

京都大学(以下、京大という)では、京大臨界集合体実 験装置(KUCA: Kyoto University Critical Assembly)と固 定磁場強収束(FFAG: Fixed Field Alternating Gradient) 加速器を結合して、ADS を模擬した未臨界炉心の未臨界 度測定[3]や MA の核分裂反応率測定[4]などの炉物理 実験研究が展開され、その枠組みで核反応モデルの検証 が行なわれている[5]。一方、KUCAで実験可能な未臨 界体系よりもさらに深い未臨界を想定する実際の ADS では、中性子エネルギースペクトルに対する核破砕反応 の寄与が増大するため、その核的性能評価や実証実験で は、より高精度の核反応モデルによる解析が必要となる。 ADS 核設計における核反応モデルの重要性から、こ れまでに、高エネルギー陽子入射によって鉛標的から 生成される中性子と荷電粒子の二重微分断面積(DDX: Double-Differential (X)cross section)及び厚い鉛標的か ら放出される中性子の収量(TTNY: Thick-Target Neutron Yield)のエネルギースペクトル測定ならびに核破砕生 成物の核種生成断面積の測定が世界各地の研究機関で精 力的に実施され、核反応モデルの高度化と国際原子力機 関(IAEA: International Atomic Energy Agency)による ベンチマーク解析が行なわれてきた [6]。しかしながら、 これまでの多大な努力にも関わらず、数十 MeV から 100 MeV 領域における中性子生成 DDX や TTNY 及び高エ ネルギー核分裂の反応機構は最新の核反応モデルでも満 足のいく精度で予測できるには至っていない。

このような背景から、我々は 100 MeV 領域の陽子加 速が可能な FFAG 加速器を用いて ADS 構成材(鉄、鉛 及びビスマス)に対する中性子生成 DDX と TTNY 測 定ならびに鉛及びビスマスの高エネルギー核分裂で発生 する核分裂片分布及び核分裂中性子数測定を実施及び計 画している。そこで得られる実験データと核反応モデル (理論モデル)の比較検討を行ない、核反応モデルの精度 向上を図る。これにより ADS の核的性能評価の信頼性 を向上させ、ADS の実現性をさらに高めることを狙う。

2. 実験

実験は、京大複合原子力科学研究所イノベーションラ ボラトリ実験棟の FFAG 加速器が設置された実験ホール で行なった。これまでに TTNY 及び DDX の測定実験を 終了し、鉛及びビスマスに対する高エネルギー核分裂に 関する実験を予定している。

Figure 3 に FFAG 加速器の外観を示し、Fig. 4 に TTNY 及び DDX 測定の実験体系を示す。これらの実験では、 それぞれ異なるビームライン上に据え付けられた真空 チェンバ内に円柱または円板状の標的を設置し、陽子 ビーム入射軸から 5–120 度の特定の角度で、標的から 2–7 m ほど離れた位置に中性子検出器を置いた (Fig. 4)。 標的と中性子検出器を設置したのち、FFAG 加速器で加

Figure 3: Picture of the FFAG accelerator used in this study.

PASJ2022 TUP040

Figure 4: Experimental setup for TTNY and DDX measurements.

数百 keV から 107 MeV にわたる幅広いエネルギー領域 の中性子エネルギースペクトルを高い検出効率で測定す るため、広発光量帯域に対応可能な直径 8 mm の小型の EJ-301 と PMT (HAMAMATSU H3164-12)を用いた。 実際の測定では、統計精度を高めるため小型中性子検出 器を 8 台並べて使用した。Figure 6 に開発した中性子検 出器システムを示す。TTNY 測定では、散乱陽子などの 荷電粒子が中性子検出器に流入しないように、中性子検 出器の前面に厚さ 16 mm の銅ブロックを置いた。一方、 DDX 測定では、中性子検出器で検出される荷電粒子事 象を除去するために、中性子検出器の前方に厚さ 2 mm、 縦横 100 mm のライトガイド付きプラスチックシンチ レータと PMT で構成される VETO 検出器 (Fig. 6 右) を置いた。

Figure 5: Neutron detector composed of EJ-301 and PMT.

速された 107 MeV の陽子ビームを標的に 1-4 時間照射 して、照射中に標的から放出される中性子とガンマ線を 検出した。

TTNY の測定では、ADS の主要な構成要素である鉄 (ビーム窓構成材)、鉛及びビスマス(核破砕標的構成材) を標的として用い、その厚さはいずれも 107 MeV 陽子に 対する飛程よりも長くなるように 30 mm とした。DDX の測定では、鉛とビスマスを用いた。DDX 測定におけ る標的の厚さは物理的観点から薄い方が望ましいが、統 計精度を高めるために、鉛及びビスマスの厚さはそれぞ れ 2 mm 及び 5 mm とした。標的の直径は、陽子ビー ムが確実に標的に入射する大きさとなるように、過去の ビームプロファイルの実績をもとに余裕を持たせて 48 mm を採用した。

ビームの繰り返しは FFAG 加速器標準仕様の 30 Hz と した。実験前のパルスビームの時間幅は 100 ns 程度で あったが、TTNY 及び DDX 測定で高いエネルギー分解 能を得るには時間幅を 10 ns 以下にする必要があるため、 バンチローテーション法とキッカー法により ~8 ns(1σ) に短パルス化されたものを用いた [7]。ビームプロファ イルの確認は、標的の近傍に蛍光板を設置し、陽子ビー ム照射による発光を CCD カメラを用いて行なった。こ の確認はそれぞれの測定角における TTNY 及び DDX 測 定を行なうたびに、事前に実施した。

中性子検出器には、液体有機シンチレータ(EJ-301) と光電子増倍管(PMT)を組み合わせたものを使用し た。Figure 5 に、使用した中性子検出器の外観を示す。

Figure 6: Front view of the neutron detector system (left); picture of the neutron detector system (right).

測定時のデータ収集(DAQ: Data Acquisition)には、 フィールドプログラマブルゲートアレイ(FPGA: Field-Programmable Gate Array)搭載のマルチチャンネルデジ タイザ(Struck Innovative Systeme 社製、型番 SIS3316) を用いて、8台の中性子検出器からの信号を同時処理す るシステムを開発した。Figure 7 に DDX 測定用の測定 回路図を示す。

中性子検出器で検出される中性子とガンマ線の検出事 象の弁別は、波形弁別 (PSD: Pulse-Shape Discrimination) 法を用いた。中性子とガンマ線でシンチレータの発光の 減衰速度が異なるため、測定ではこれを利用して2つの 異なるゲート (Fast ゲート及び Slow ゲート)を設定し (Fig. 8)、それぞれのゲート幅における発光積分量をデ ジタル信号として記録した。この情報をもとに得られた PSD の二次元プロットを Fig. 9 に示す。図の赤線を境に 中性子とガンマ線の検出事象が明瞭に弁別できているこ とがわかる。

PASJ2022 TUP040

Figure 7: Block diagram of the DAQ system for the DDX measurement.

Figure 8: Gamma-ray-induced and neutron-induced pulse shapes and the fast- and slow-gate settings.

PSD 法によりガンマ線検出事象を取り除いて得られ た中性子検出事象の時間情報と中性子が標的から中性子 検出器に到達するまでの距離(飛行距離)をもとに、飛 行時間(TOF)法により中性子の飛行時間スペクトルを 導出した。室内散乱中性子の寄与は、シャドーバーを用 いた測定結果により取り除いた。さらに、検出器の検出

Figure 9: Two-dimensional plot of the pulse shape discrimination between the neutron and gamma-ray events at a detector angle of 5° for the Pb target for the TTNY measurement.

効率や標的・検出器間の中性子の減衰等を、放射線挙動 解析コード PHITS [8,9] による解析に基づいて補正し、 相対論的運動学に基づいて中性子の飛行時間スペクトル をエネルギースペクトルに換算した。

3. 実験結果

本実験により、鉄、鉛及びビスマス標的に対する TTNY 及び DDX のエネルギースペクトルが得られた。一例 として鉛に対する 107 MeV 陽子入射 TTNY の実験 値と核反応モデルによる解析値との比較を Fig. 10 に 示す。ここでは、PHITS に組み込まれている核反応モ デル (INCL4.6/GEM、Bertini/GEM、JQMD/GEM 及び JQMD/SMM/GEM [10-14]) と評価済み核データライブ ラリ JENDL-4.0/HE [15] を用いた解析結果を記してい る。およそ 10 MeV を境にして、高エネルギー側では強 い前方性を持ったエネルギー分布となるのに対し、低エ ネルギー側では等方的なマクスウェル型の分布となる。 これは、原子核から中性子が放出するメカニズムが核反 応における2つのプロセスで大きく異なるためであり、 それぞれ核反応モデルに含まれる核内カスケードモデル 及び蒸発モデルによって記述される。本実験で得られた TTNY と DDX データは 700 keV から 107 MeV の広範 なエネルギーにわたるため、100 MeV 領域核破砕反応に おける両モデルの総合的な検証が可能となった。核反応 モデルとの比較により、いずれの核反応モデルも鉄、鉛 及びビスマスに対する TTNY 実験値に対して特徴的な 不一致の傾向を示すことがわかった(TTNY 測定の詳細 は文献 [16] を参照)。その傾向は DDX 実験値に対して も同様であった(予備的な測定結果は文献 [17] を参照)。

4. まとめと今後の予定

京大 FFAG 加速器を用いて ADS 構成材の中性子生成 DDX と TTNY の測定及び高エネルギー核分裂に関す る実験を実施及び計画している。これまでに TTNY と

Proceedings of the 19th Annual Meeting of Particle Accelerator Society of Japan October 18 - 21, 2022, Online (Kyushu University)

PASJ2022 TUP040

Figure 10: Comparison of the energy spectra of 107-MeV proton-induced TTNYs for the Pb target.

DDX の測定を終え、核反応モデルの高度化に資するデー タの取得に成功した。今後は引き続き、得られた DDX データの詳細解析を行ない、鉛及びビスマスの高エネル ギー核分裂に関する実験を実施する予定である。

謝辞

本研究は文部科学省原子力システム研究開発事業 JP-MXD0219214562の助成を受けたものです。実験を遂行 するにあたり、京都大学の牧大介博士(現大分大学)と 沖雄一准教授に多大なご協力を戴きました。ここに感謝 の意を表します。

参考文献

[1] 文部科学省科学技術·学術審議会 研究計画·評価分科会 原子力科学技術委員会 原子力研究開発・基盤・人材 作業部会 郡分離・核変換技術評価タスクフォース,群 分離・核変換技術評価について(タスクフォースとりま とめ):

https://www.mext.go.jp/content/

- 20211223-mxtgensi-0000196061.pdf
- [2] 西原健司,"使用済み燃料の潜在的放射性毒性評価のため のデータベース", JAEA-Data/Code 2010-012 (2010).
- [3] H. Iwamoto et al., "On-line subcriticality measurement using a pulsed spallation neutron Source", J. Nucl. Sci. and Technol., vol. 54, no.4, pp.432-443, 2017; doi:10.1080/00223131.2016.1274687
- [4] C. Pyeon *et al.*, "First nuclear transmutation of ²³⁷Np and ²⁴¹Am by accelerator-driven system at Kyoto University Critical Assembly", J. Nucl. Sci. and Technol., vol. 56, no. 8, 2019, pp.684-689, 2019;
 - doi:10.1080/00223131.2019.1618406

- [5] C. Pyeon et al., "Reaction rate analyses of high-energy neutrons by injection of 100 MeV protons onto lead-bismuth target", Ann. Nucl. Energy, vol. 144, 2020, p.107498, 2020; doi:10.1016/j.anucene.2020.107498
- [6] D. Filges et al., Joint ICTP-IAEA Advanced Workshop on Model Codes for Spallation Reactions, Trieste, Italy 4-8 Feb. 2008; http://www-nds.iaea.org/reports-new/

indc-reports/indc-nds/indc-nds-0530.pdf

[7] T. Uesugi et al., "Short pulsed beam extraction in KURNS FFAG", Proc. the 18th Annual Meeting of Particle Accelerator Society of Japan, QST-Takasaki Online, Japan, Aug. 9-12, 2021; http://www.pasj.jp/web_publish/pasj2021/

proceedings/index.html

- [8] T. Sato et al., "Features of particle and heavy ion transport code system (PHITS) version 3.02". J Nucl Sci Technol., vol. 55 no. 6, pp.684-690, 2018; doi:10.1080/00223131.2017.1419890
- D. Satoh et al., "Improvements in the Particle and Heavy-[9] ion Transport Code System (PHITS) for simulating neutronresponse functions and detection effciencies of a liquid organic scintillator". J Nucl Sci Technol., vol. 59, no. 8, pp.1047-1060, 2022;

doi:10.1080/00223131.2021.2019622

[10] A. Boudard et al., "New potentialities of the Liège intranuclear cascade model for reactions induced by nucleonns and light charged particles". Phys. Rev. C, vol. 87, p.014606, 2013;

doi:10.1103/PhysRevC.87.014606

[11] S. Furihata, "Statistical analysis of light fragment production from medium energy proton-induced reactions", Nucl. Instrum. Methods Phys. Res. B., vol. 171, pp.251-258, 2000.

doi:10.1016/S0168-583X(00)00332-3

- [12] H. Bertini, "Intranuclear-cascade calculation of the secondary nucleon spectra from nucleon-nucleus interactions in the energy range 340 to 2900 MeV and comparisons with experiment", Phys. Rev., vol. 188, p.1711, 1969; doi:10.1103/PhysRev.188.1711
- [13] K. Niita *et al.*, "Analysis of the (N, xN') reactions by quantum molecular dynamics plus statistical decay model", Phys. Rev. C, vol. 52, pp.2620-2635, 1995; doi:10.1103/PhysRevC.52.2620
- [14] T. Ogawa et al., "Analysis of multi-fragmentation reactions induced by relativistic heavy ions using the statistical multifragmentation model", Nucl. Instrum. Methods Phys. Res. A., vol. 723, pp.36–46, 2013; doi:10.1016/j.nima.2013.04.078
- [15] S. Kunieda et al., "Overview of JENDL-4.0/HE and benchmark calculations". Proc. 2015 Symposium on Nuclear Data, Tokai, Nov 19-20, JAEA-Conf 2016-004, pp.41-46, 2016.
- [16] H. Iwamoto et al., "Measurement of 107-MeV protoninduced double-differential thick target neutron yields for Fe, Pb, and Bi using a fixed-field alternating gradient accelerator at Kyoto University", J. Nucl. Sci. and Technol., (published online, Sep. 22, 2022); doi:10.1080/00223131.2022.2115423
- [17] H. Iwamoto et al., "Measurement of double-differential neutron yields for iron, lead, and bismuth induced by 107-

Proceedings of the 19th Annual Meeting of Particle Accelerator Society of Japan October 18 - 21, 2022, Online (Kyushu University)

PASJ2022 TUP040

MeV protons for research and development of acceleratordriven systems", in *Proc. ND2022*, Gather.town, July 21–29 2022 (to be published).