

J-PARCリニアックでの位相ドリフトモニターのインストールと評価

Installation and Test of the Phase Drift Monitor at J-PARC Linac

WEOB09 October 19th 16:30-16:50

○チーチェック エルシン , 方 志高, 福井 佑治, ニツ川 健太, 溝端 仁志 (高エネ研) , 佐藤 福克 (NAT) • Ersin Cicek, Zhigao Fang, Yuji Fukui, Kenta Futatsukawa, Satoshi Mizobata (KEK), Yoshikatsu Sato (NAT)

CICEK Ersin (チーチェック エルシン)

KEK, Accelerator Laboratory J-PARC Center, Accelerator Division, 7th Section. On behalf of J-PARC linac RF team E-mail: <u>ecicek@post.kek.jp</u>

1/11

Introduction; J-PARC linac

O The phase drift monitor-PDM

- Introduction: motivation
- Hardware & software
- Device installation
- Long-term RF phase measurements results

Conclusions

Outline

Introduction: J-PARC linac

J-PARC (Japan Proton Accelerator Research Complex)

IS	Ion source
RFQ	Radio Frequency Quadrupole Linac
DTL	Drift Tube Linac
SDTL	Separate-type Drift Tube Linac
ACS	Annual Coupled Structure Linac

[1] I. Masanori, "Beam commissioning and operation of the J-PARC linac", Prog. Theor. Exp. Phys., vol. 2012, p. 02B002, 2012. doi.org/10.1093/ptep/pts019 [2] H. Ao et al., "First annular-ring coupled structure cavity for the Japan Proton Accelerator Research Complex linac", Phys. Rev. ST Accel. Beams, vol. 15, 005, 2012. doi.org/10.1103/PhysRevSTAB.15.051005 E. Cicek, PASJ22, Online

Main parameters of the J-PARC linac				
Particles \rightarrow H ⁻ (negative hyd				
Peak current	→ 50 mA			
Pulse width	→ 500 µs (Beam), 650 µs (RF)			
Kinetic energy	→ 400 MeV			
Repetition	→ 25Hz			
Acceleration frequency	→ 324 MHz, 972 MHz			

• Total of 49 RF stations; 24 (324 MHz) + 25 (972 MHz)

- SDTL consists of two cavity tanks: "SDTL**A" and "SDTL**B":
- MEBT2B1, MEBT2B2 stations at MEBT2
- ACS01 \rightarrow ACS21
- LLRF system with digital feedback (DFB) and feedforward (DFF) at each station.

[3] Z. Fang et al., "Auto-tuning systems for J-PARC LINAC RF cavities", Nucl. Instrum. Methods Phys. Res. A., vol. 767, p.135, 2014. doi.org/10.1016/j.nima.2014.08.014

Phase drift monitor

• The drift in the momentum of the injection beam **must be within ±0.05%;**

- · It is essential to stabilize RF field in linac cavities
- Humidity & temperature can cause drift in beam injection momentum

[1] K. Moriya et al., "Energy measurement and correction for stable operation in J-PARC", J. Phys.: Conf. Ser., 2019, 1350, 012140
 [2] K. Futatsukawa et al., "Performance of Cavity Phase Monitor at J-PARC Linac", IPAC2013, WEPFI017, Shanghai, China

E. Cicek, PASJ22, Online

- Drift compensation systems;
 - I) Using **cavity phase monitors (CPMs)** located at each RF station (extant). *Two frequencies are individually measured at CPMs.
- II) A phase drift monitor (PDM) installed at MEBT2B1;

<u>Xilinx Zynq UltraScale+ RFSoC ZCU111</u> evaluation platform,

*Measure phase relationship between **two frequencies simultaneously***

^aLocal oscillator is not used.

Parameters Extant		Updated
Device	Cavity phase monitor	Phase drift monitor
Technique	Downconverter + IF sampling	Direct sampling
LO	Used	Not used ^a
Frequency	324 MHz* or 972 MHz*	324 MHz* and 972 MH
Key point	Conventional	RFSoC*

Drift compensation scheme:

- SDTL16 and MEBT2B1 RF stations placed in a constant temperature&humidity environment are the references,
- Computing the RF phase differences with respect to the reference phases (SDTL16 and MEBT2B1),
- Compensation for possible drift in RF signals within the DFB system.

Hardware & Software

• FPGA firmware;

- The PDM architecture, by Mitsubishi Electric TOKKI System Co., Ltd (MEL
 - Xilinx UltraScale+ **RFSoC ZCU111** evaluation board;
 - * XCZU28DR-2FFVG1517 FPGA,
 - * Embedded with EPICS IOC runs on the board itself.
 - An analog front end; RF differential breakout card (AES-LPA-502-G) and
 - [3] ES-LPA-502-G, RF Breakout Card for Zynq UltraScale+ RFSoC
 - [4] ADC wideband balun board (ADC-WB-BB)

E. Cicek, PASJ22, Online

[1] Zynq UltraScale+ RFSoC ZCU111 Evaluation Kit", https://www.xilinx.com/products/boards-and-kits/zcu111.html/
 [2] Mitsubishi Electric TOKKI Systems Corporation, http://www.melos.co.jp/english/products/

. OS):	Featuring the Zyr RF Data Conver	nq UltraScale+ XCZU28DR-2FI ter	FVG1517E RFSo
	# of 12-bit ADCs		8
	Max Rate (GSPS	6) (>1 GHz BW)	4,096
	# of 14-bit DACs		8
baluns.	Max Rate (GSPS	S)	6,554
	Communication	s & Networking	
	USB 3.0, SFP+,	RJ45, USB UART/JTAG	1/4/1
DSP function	Expansion Con	nectors	
ock generation	RFMC 1.0 \rightarrow (RF	FMC (ADC) and RFMC (DAC)	2
OT)	Add-on Cards		
oftware	XM500 RFMC Ba	alun Add-on Card (AES-LPA-50)2-G) 1
<u>t studies;</u>		FPGA & CPU	PS Etherr
r coeff. for each ADC ch.			
mentation of		Gystern implementation	MS monitor MS monito
R filter in FPGA:		ADC(2n) 16 DDC 16*2 ROT 16*2	16*2 LPF
<pre>→filter coef) ADC00~ADC0 324MHz, +0dBr</pre>	3 m₁ BAIDIT → HOLO		VS 16*2
y(n-1) ADC04~ADC0 972MHz, +0dBr	n l balun → balun		16*2
VS combination		ADC(2n+1) DDC ROT ROT	
ADC02 • ADC0 ADC04 • ADC0	3 i 	16*3	TBD
	7	NCO a,b,c setting x1=4096	filter coeff.
		PLL x8 fadc: 3888 MHz	
(324 M	CE CIOCK Hz)		<u> </u>
	FF	PGAREF (121.5MHz)	
$\begin{array}{c} & & \\ & & \\ & \\ & \\ \\ \end{array} \\)^{-2} & 10^{-1} & 10^{0} \\ \end{array} $	← (Clock	ADCLK (486MHz) RF	TRIG Conv.
f/fs	generalion)	20•4	0 msec 3.3VLVCM0

Performance analysis completion

- The first results, amplitude and phase stabilities, crosstalk ADC, etc., were reported.
- To evaluate the drift in phase differences;
 - A commercial environmental test chamber (ESPEC PDR-3J),
 - LTC6954 evaluation board, SMB100A signal generator,
 - Reference phases ϕ_3 (324 MHz), ϕ_7 (972 MHz).

Ramping rate	Step	Phase drift [deg]			
		$\Delta arphi_{324}$	$\Delta arphi_{972}$	$\Delta arphi_{ m ref}$	Λ_{0000} and Λ_{00070} a
2°C/3 h (fixed 65%RH)	1°C	1.23E-03	6.68E-03	3.75E-02	differences (pp) of channels, respective $\Delta \varphi_{\rm ref}$:phase drift in
25%RH/24 h (fixed 27°C)	1%RH	1.20E-04	6.63E-04	4.20E-04	

E. Cicek, PASJ22, Online

[1] E. Cicek et al., A Recent Upgrade on Phase Drift Compensation System for a Stable Beam Injection at J-PARC Linac, IPAC2021, Campinas, SP, Brazil WEOB09

- Providing a stable
 - temperature&humidity inside
 - the MEBT2B1 LLRF control rack:
- PDM is ideal to be
 - implemented in the LLRF
 - system in terms of
 - temperature&humidity
 - characteristics.

Remarks

- verage drifts in phase f 324 MHz and 972 MHz
- tively.
- n relative phase difference

Relative phase difference $\rightarrow \Delta \phi_{73} = \Delta \phi_3 - (\Delta \phi_7/3)$

Installation & Long-term RF phase measurement

Sn Acce

MEBT2B1 RF stations)

	f@324 MHz				f
Cavity	SDTL 15A	SDTL 15B	SDTL 16A	SDTL 16B	MEBT. B1
φ@PDM	ϕ 0_pdm	ϕ 1_pdm	ϕ 2_pdm	ϕ 3_pdm	ϕ 4_pdm
VS phase		$\phi_{01_{vs}}$		$\phi_{23_{vs}}$	
φ@PDM VS phase	$75A$ ϕ 0_pdm	$75B$ ϕ 1_pdm ϕ 01_vs (SDTL15VS)	7 <i>6Α</i> φ2_pdm	76B ϕ_{3_pdm} ϕ_{23_vs} (SDTL16VS)	φ4_p

Long-term RF phase measurement cont'd

	f@324 MHz				f@	972 MF
Cavity	SDTL15A	SDTL15B	SDTL16A	SDTL16B	MEBT2B1	MEBT2
φ @PDM	ϕ 0_pdm	ϕ 1_pdm	ϕ 2_pdm	ϕ 3_pdm	ϕ 4_pdm	ϕ 5_pdr
<i>φ</i> @CPM		ϕ 1_cpm	$\phi_{2_{ m cpm}}$		ϕ 4_cpm	$\phi_{5_ cpr}$
VS phase		ϕ 01_vs		ϕ 23_vs		

	f@972 MHz	f@324 MHz
Cavity phase diff.	MEBT2B2-MEBT2B1	SDTL16A-SDTL
Δφ @PDM	$\Delta \phi_{54_ m pdm}$	$\Delta \phi_{ ext{21_pdm}}$
Δφ @CPM	$\Delta \phi_{54_ ext{cpm}}$	$\Delta \phi_{ ext{21_cpm}}$

- Phase differences compared with permanently installed and successfully operated CPMs:
 - EPICS archiver appliance for data storage.
 - ☑ Consistency between PDM and CPMs,
- ☑ No change in the center of phase differences,
- Stable temperature and humidity in the MEBT2B1 rack.

MAF \rightarrow moving average filter

Relative phase difference

• $\Delta \phi_{rel}$ relative phase difference derived from phase differences between two different frequencies of 324 MHz and 972 MHz;

$$\Delta \phi_{\text{rel}} = \Delta \phi_{23_{\text{vs}}} - (\Delta \phi_{4_{\text{pdm}}}/3)$$
324 MHz
972 MHz

- $\Delta \phi_{23_{vs}}$ and $\Delta \phi_{4_{pdm}}$ denote phase changes (pp) in the reference channels of ADC03 (SDTL16 VS) and ADC04(MEBT2B1), respectively,
- Data was evaluated on the PDM for about 1-week.

[1] K. Futatsukawa et al., "Upgrade of the RF Reference Distribution System for 400 MeV LINAC at J-PARC", IPAC2012, WEPPD050, New Orleans, Louisiana, USA

		(Reference @324 MHz)	(Reference @972 N
		(ADC03 ch.)	(ADC04 ch.)
	Phase difference	SDTL16VS	MEBT2B1
	Δφ _{rel} @PDM	$\Delta \phi_{23}$ _vs	$\Delta \phi_{4_{ m pdm}}$

- The relative phase difference tends to be similar to the;
 - Humidity change in the klystron gallery,
 - Or, humidity change in the optical duct, where RF reference signals are distributed.
- **Model of the second se** the drift in the relative phase difference.

- measured to be stable for the long-term on the CPMs and PDM.
- frequencies.
- by eliminating environmental effects, which is crucial for a stable long-term operation.

Conclusions

• Phase differences between 324 MHz cavities and their respective reference phase, as well as that of 972 MHz cavities, are

• However, we have found that environmental factors, particularly humidity changes, cause long-term phase drift in the relative phase difference, critical information for stabilizing accelerating RF fields through linac cavities operating at two different

• The source of variation in the relative phase difference is thought to be humidity change in the optical duct or klystron gallery.

The PDM will be employed within the LLRF system to compensate for possible phase and amplitude drifts in cavity RF signals

10/11

• Special thanks the staff members of **Mitsubishi Electric Tokki** Systems Co., who implemented a perfect phase drift monitor for the J-PARC linac.

We also thank the **Mitsubishi SC** members for their excellent 0 work during the device installation.

Thank you for your attention.

ご静聴ありがとうございました。

WEOB09 11/11