超伝導加速空洞の表面磁場効果 THE SURFACE MAGNETIC FIELD EFFECTS ON SUPERCONDUCTING ACCELERATING CAVITIES

江木昌史*

Masato Egi *

High Energy Accerlerator Research Organization

Abstract

One of various causes for Joule loss in a superconducting accelerating cavity is thought to be created by the normalconducting electrons, but it is unreasonable for normal-conducting electrons to move in a superconductor by sensing an external electric field. This article aims to show that what drives the normal-conducting electrons may be the surface magnetic field, and to confirm how it is expressed.

1. はじめに

超伝導加速空洞(以下、超伝導空洞)では様々な原 因によりジュール損失が発生することが知られてい る。その中で BCS 理論の準粒子による損失があり、 これまで理論的なアプローチにより解明されて来 た。準粒子は常伝導電子と単純に捉える時に、古典 論で記述できると考えることは着想として自然なこ とである。本稿は超伝導空洞のジュール損失の中で も常伝導電子と解釈された準粒子の寄与を古典論に より再構築することを目標としている。そのために は先ず、ピルボックスにより電磁場と表皮電流を単 純化することから話を始める。本稿の計算は全て SI 単位系を用いる。

* masato.egi@kek.jp

2. ピルボックスの電磁場

2.1 1.3GHz ピルボックスの概要

1.3GHz ニオブ製ピルボックスを仮定する (Fig.1)。 ニオブは臨界温度 T_c = 9.25 K 以下で超伝導状態で あり、それより高い温度では常伝導状態である。円 筒の半径を r₀ m、軸方向の長さが l₀ m、両端面には $\pm q_0 C$ の電荷が蓄積されると考える。 $c = 1/\sqrt{\mu_0\epsilon_0}$ とすると自由空間の f₀ =1.3 GHz の電磁波の波長は $\lambda_0 = c/f_0 = 0.230$ m である。電子が光速に近い速度 で加速空洞中を加速電場の半周期で通過するために は $l_0 = \lambda_0/2 = 0.115 \text{ m}$ の条件が必要となる。また 計算を簡単にするために r₀ = 0.115 m も仮定する。 ピルボックスの加速モード TM010 の共振周波数は $f_0 = 2.405c/2\pi r_0$ Hz であり [1]、ここに $r_0 = 0.115$ mを代入すると f₀ = 0.9978 GHz となり、この仮定 により共振周波数が3割ほどの誤差を持つことに 注意する。更に計算を簡単にするために Fig.1 のと おり、端面上の電荷分布をベッセル関数の線形近似 $J_0(2.405r/r_0) \approx 1 - (r/r_0)$ を用いる [2]。この章では 特に常伝導と超伝導の区別は設けない。また、便宜的 にピルボックスの両端面を極板と呼ぶことにする。

2.2 容量*C*と誘導*L*

加速モード TM010 の電磁場は模式的に Fig.2 のように表せる。電場 E は鉛直上向きを正に取り、磁場 H は反時計回りを正に取る。本稿では電場と電界強 度、磁場と磁界強度を同義で用い、電束密度と磁束 密度は略さずに用いる。

ピルボックス内の電場エネルギーは特定位置 \mathbf{r}_1 の 電界強度 $E(\mathbf{r}_1)$ に着目して単純化できる。ピルボッ クス内の任意の位置 \mathbf{r} の電界強度 $E(\mathbf{r})$ はほぼ同位相 で変動しており、従って電場エネルギーの全体量も 同位相で変動する。すると体積素片をdVとして電場 のエネルギー密度をピルボックス内で積分すると、

$$\int_{pillbox} \frac{1}{2} \epsilon_0 E(\mathbf{r})^2 d\mathcal{V} = \frac{1}{2} \epsilon_0 E(\mathbf{r}_1)^2 \mathcal{V}_E \quad [J] \qquad (1)$$

となり、電場エネルギーの全体量は特定位置のエネ ルギー密度 $\epsilon_0 E(\mathbf{r}_1)^2/2$ の定数倍となる。その比例定

Figure 2: Electromagnetic Field in Pillbox.

数 \mathcal{V}_E は換算体積と呼ぶことができる。以降は \mathbf{r}_1 を 極板中心に取り、その表面電場を $E_0 = E(\mathbf{r}_1)$ と置く ことにする。極板の電荷分布は Fig.1 の円錐状を仮定 しているので、極板電荷 q_0 と E_0 の関係は、

$$q_0 = \epsilon_0 E_0 \pi r_0^2 / 3 \ [C] \tag{2}$$

である [2]。(2) 式は電磁場の具体的数値を与える上 で重要である。この式は半径 $r_0/\sqrt{3}$ の円内で電束密 度 $\epsilon_0 E_0$ が一定であると捉えることもできる (Fig.2)。 (1) 式の積分を U_E と置いて、電場、電圧、電荷の関 係を整理すると、

$$U_E = \frac{1}{2}\epsilon_0 \{S_E l_E\} E_0^2 = \frac{1}{2}\epsilon_0 E_0^2 \mathcal{V}_E$$
(3)

$$= \frac{1}{2} \frac{\epsilon_0 S_E}{l_E} \{E_0 l_E\}^2 = \frac{1}{2} C V_0^2$$
(4)

$$= \frac{1}{2} \frac{l_E}{\epsilon_0 S_E} \left\{ \epsilon_0 S_E E_0 \right\}^2 = \frac{1}{2} \frac{1}{C} q_0^2 \tag{5}$$

となる。ただし、 $l_E = l_0$ 、 $S_E = \pi r_0^2/3$ と置いている。これによりピルボックスの容量 *C* は、

$$C = \epsilon_0 S_E / l_E \tag{6}$$

と定義できる。

磁界強度についても同様に、

$$\int_{pillbox} \frac{1}{2} \mu_0 H(\mathbf{r})^2 d\mathcal{V} = \frac{1}{2} \mu_0 H(\mathbf{r}_2)^2 \mathcal{V}_H \quad [J] \qquad (7)$$

であり、 \mathcal{V}_H は磁場の換算体積である。ピルボックス 内の磁場分布はトロイダルコイルの磁場分布 (トー ラス) と同じである。平均磁路長を $l_H = 2\pi(r_0/2)$ と 置くと、磁束の断面積は $S_H = \pi(r_0/2)^2$ である。極板 電荷が q_0 の時の電流値は $I_0 = \omega q_0 = \dot{q}_0$ であり [2]、 平均磁路長上の磁界強度 $H_0 = I_0/l_H$ がトーラス内 に分布していると考えることができる。(7) 式の積分 を U_H と置くと、磁場、電流、磁束の関係は、

$$U_H = \frac{1}{2}\mu_0 \{S_H l_H\} H_0^2 = \frac{1}{2}\mu_0 H_0^2 \mathcal{V}_H$$
(8)

$$= \frac{1}{2} \frac{\mu_0 S_H}{l_H} \{H_0 l_H\}^2 = \frac{1}{2} L {I_0}^2$$
(9)

$$= \frac{1}{2} \frac{l_H}{\mu_0 S_H} \left\{ \mu_0 S_H H_0 \right\}^2 = \frac{1}{2} \frac{1}{L} \Phi_0^2 \qquad (10)$$

となる。これによりピルボックスの誘導 L は、

$$L = \mu_0 S_H / l_H \tag{11}$$

と表すことができる。

ここで、定義された容量 C と誘導 L により共振周 波数とインピーダンスを求めてみる。これまでに与 えられている数値を代入すると、

$$f_0 = \frac{1}{2\pi\sqrt{LC}} = 0.8114 \times 10^9 \ [Hz]$$

また、

$$\sqrt{\frac{L}{C}} = \sqrt{\frac{\mu_0}{\epsilon_0}} \times 0.4886 \ [\Omega]$$

である。共振周波数については仮定している 1.3 × $10^9 Hz$ より 4 割ほど低い値であるが、元々 3 割低 い共振周波数に半径 r_0 を設定していた。インピー ダンスについてはより詳細な計算と良く一致している [2]。これは回路理論の容量 C や誘導 L として一 定の合理性があることを示している。

3. 超伝導状態の電子比熱

実験によると超伝導状態の電子比熱 Ces は、

$$C_{es} = \alpha \gamma T_c \exp(-BT_c/T) \left[J/(\mathbf{g} \cdot K) \right]$$
(12)

である [3]。 α は比例定数、 γT_c は臨界温度 T_c にお ける通常の電子比熱、 $B \simeq 1.5$ である。この式は温度 T、1gの超伝導体において 1K の温度を下げる時に 常伝導-超伝導遷移に要するエネルギーを表す。超伝 導エネルギーギャップ $\Delta_0 = 2k_BT_c$ は電子比熱 γT_c の定数倍なので、電子比熱 γT_c が一電子当たりの 超伝導遷移エネルギーを意味すると捉えることもで きる。では温度 T において遷移可能な常伝導電子の 状態密度は $\exp(-BT_c/T)$ であろうか。次に検証して みる。

超伝導現象を扱う場合、温度は臨界温度 T_c で除し た特性温度 $t = T/T_c$ を常用する。超伝導電子数密度 を $n_s(t)$ とするとt = 0の時に $n_s(0) = n_e$ をここでは 仮定する。ただし、ne は単位体積当たりのニオブの5s 電子数密度、 $n_e = 5.55 \times 10^{28} \, electrons/m^3$ である [2]。 ロンドン侵入深さの考察から $n_s(t) = n_e(1 - t^4)$ の関 係があり [4]、従って常伝導電子数密度は $n_n = n_e t^4$ である。(12) 式は常伝導から超伝導に遷移する電子 の状態密度を因子として含んでいなければならな い。n_n = n_et⁴ は常伝導電子数密度の温度依存性を示 しており、従って t による導関数は常伝導から超伝 導に遷移する電子数 (t における状態密度) を与える と考えることができる。そこで超伝導遷移が急激に 生じる t = [0.5, 1] の領域で $\partial n_n / \partial t = 4n_e t^3$ の t^3 を $\exp(-\Delta_0/k_B T_c) = \exp(-2/t)$ で除してみて、その比 率を観察してみる (Fig.3)。縦軸の" $t^3/\exp(-2/t)$ "は t = [0.5, 1] の領域で大よそ7程度の一定した比率を 示している。これは t = [0.5, 1] において $\exp(-2/t)$ に7を乗じると t³ とほぼ同じ形のグラフを描くこと を意味している。t = [0, 0.5] の領域では微分係数が

PASJ2022 WEP030

小であるためにそもそも変化量が小さく、また絶対 値が小の数の逆数も大きく変動するので確認作業か ら除外した。従って、 n_n の導関数と同様に $\exp(-2/t)$ は超伝導遷移する常伝導電子の状態密度を与えると 考えることができる。

以上より、 $n_n = n_e t^4$ が超伝導体中の常伝導電子 数密度であることに合理性があると判断できる。

Figure 3: Ratio between t^3 and $\exp(-2/t)$.

4. 誘導電場と常伝導電流

4.1 超伝導電流のモデル化

超伝導空洞の電磁場と高周波損失の計算を行いた いが、そのためには超伝導状態の表皮電流をモデル 化しなければならない。そのモデル化の際、以下の理 由により、当座の考察対象はピルボックス側面とす る。極板上の電荷にはクーロン力が働き、ピルボック ス側面の超伝導電子は極板電荷に押し出されて、或 いは、一体となって運動するだけであり、ピルボッ クス側面は考察対象を電流のみに限定でき、モデル をより単純にすることができる。

まず超伝導ニオブの表面状態を以下のように単純 化する (Fig.4)。最表面は厚さ約 5nm の酸化ニオブ層 があり、その下に超伝導ニオブがある。表面から深 さ方向に x 軸の正を取り、酸化膜とニオブの界面に x 軸の原点を取る。原点から深さ 40nm までの領域 がコヒーレンス長 ξ_0 で、この領域に超伝導電流が一 様に流れると仮定する。 $\{0 \le x \le \xi_0 \mid J(x) = const.\}$ である。第2章で述べたとおり、ピルボックス内の 磁場分布はトロイダルコイルと同じなので内部磁場 は表皮電流の外に漏れない。すなわち $x > \xi_0$ では磁 界強度 H = 0 であり、電流密度も J = 0 である。す ると、表皮電流は磁場遮蔽電流 (マイスナー電流)と 等価であり、マイスナー電流は考察対象から除外で きる。また、電流密度が一様の条件より $0 \ge x \ge \xi_0$ における磁界強度は、

$$H(x) = H_{S0} \left(1 - x/\xi_0 \right) \left[A/m \right]$$
(13)

である。x = 0 で最大磁界強度 $H(0) = H_{S0}$ であ り、直線的に減少し $x = \xi_0$ で $H(\xi_0) = 0$ となる。 前章の平均磁路長における磁界強度は $H_0 = I_0/\pi r_0$ であるのに対し、ピルボックス側面の表面磁場は $H_{S0} = I_0/2\pi r_0$ である [2]。 ベクトルポテンシャル A は表皮電流の外側 ($x > \xi_0$) においても存在するが以下の理由で考察から除 外する。一電子の運動量は $p = m_e v + e_0 A$ である。 電流密度は $J = n_e e_0 v$ であるので、右辺第一項が電 流密度に寄与する。第二項は表皮電流が作るベクト ルポテンシャル A の中に e_0 を置くことにより付与 される運動量である。超伝導体は磁場は遮蔽するが ベクトルポテンシャルは遮蔽できないと考えられて おり、もしも $x > \xi_0$ において rot $A = \mu_0 H \neq 0$ なら ばトロイダルコイルの磁場の条件として不合理であ る。従って $x > \xi_0$ におけるベクトルポテンシャルは 考察から除外する。

Figure 4: Surface Current and Magnetic Field.

4.2 超伝導空洞の高周波損失と表面抵抗

理論上、超伝導電子は一つの波動関数であり、全体 が一体となって運動する。常伝導電子の場合、フェ ルミ球内の状態和は常伝導電子数に等しく、外部電 場によるフェルミ球の変位は状態和と同数の過程を 経る必要がある。超電導、常伝導の二相状態では過 程が複雑な常伝導電子は外部電場により動くことが できないと普通は考えられる。仮に超伝導体内で常 伝導電子を動す電場が存在するならば、候補に誘導 電場が挙げられる。超伝導体は直流電流で有限な抵 抗値を示さないので、誘導電場を考えるのは決して 無理な話ではない。ここで誘導電場とは磁場の時間 変化によるものであり、表皮電流が自分で作る磁場 から受けるローレンツ力とは異なるものとする。ま た、誘導電場は超伝導電子にも作用するが、誘導電 場も働いた状態で超伝導空洞は共振状態に入ると考 えられる。単純化のために $\omega = 1/\sqrt{LC}$ の共振状態 を仮定する。

マクスウェル方程式から誘導電場 $E_I(x)$ (ただし、 0 $\leq x \leq \xi_0$)を直接導くのは意外と難しく、誘導電場 $E_I(x)$ をローレンツ力として求めることにする。誘 導電場の向きは超伝導電流 I_0 の変化を妨げる向きに 働く。電流 I_0 の向きが定まれば (13) 式の磁場 H(x)の向きも定まる。磁場 H(x)の並進移動によるロー レンツ力が超伝導電流の変化を妨げると考え、並進 移動速度を \dot{x} とする。実際のところ磁場は電流に出 入りし、動いているとも考えられる。するとローレ

PASJ2022 WEP030

ンツ力 $E_I(x)$ は、(13) 式を用いて、

$$E_I(x) = -\dot{x} \times \mu_0 H(x)$$

= $-\frac{\partial H(x)}{\partial t} \frac{\partial x}{\partial H(x)} \times \mu_0 H(x)$
= $-\dot{H}(x) \cdot \frac{\xi_0}{H_{S0}} \cdot \mu_0 H_{S0}(1 - x/\xi_0)$
= $-\mu_0 \xi_0 (1 - x/\xi_0)^2 \dot{H}_{S0} \quad [V/m]$ (14)

となる。ここでコヒーレンス長 ξ_0 の領域で磁界強度 の勾配は一定なので $\partial H(x)/\partial x = H_{S0}/\xi_0$ と置いて いる。更に誘導電場 $E_I(x)$ を $x = [0,\xi_0]$ の深さ方向 で積分すると、

$$\int_{0}^{\xi_{0}} E_{I}(x) dx = E_{I}(0) \frac{\xi_{0}}{3} \left[\frac{V}{m} m\right]$$
(15)

である。この式の $\xi_0/3$ は誘導電場 $E_I(0)$ 方向の距離 ではなく、 $E_I(0) \xi_0/3$ の単位は電圧とは異なる。(15) 式は x = 0における誘導電場 $E_I(0) = -\mu_0\xi_0\dot{H}_{50}$ が 深さ $x = [0, \xi_0/3]$ の領域で一定して作用していると 捉えることもできる。

室温の電気伝導度は緩和時間を τ とすると $\sigma = n_e e_0^2 \tau / m_e$ である。超伝導体中の常伝導電子数密度 は $n_e t^4$ と考えているので、超伝導体中の常伝導電子 の電気伝導度を σt^4 と仮定してみることにする。す ると誘導電場 $E_I(0)$ により生じる常伝導電流密度は $J_I = \sigma t^4 E_I(0)$ であり、ピルボックス側面を流れる電 流値 I_I は、 $\dot{H}_{S0} = \omega I_0 / 2\pi r_0$ に注意して、

$$I_I = \sigma t^4 E_I(0) 2\pi r_0 \frac{\xi_0}{3} = -\sigma t^4 \mu_0 \frac{{\xi_0}^2}{3} \omega I_0 \quad [A]$$
 (16)

である。するとピルボックス側面におけるジュール 損失は、常伝導電流の占める体積を*V_R*として、

$$W_{I1} = \int_{side \ surface} \frac{1}{2} \sigma t^4 E_I(0)^2 d\mathcal{V}_R$$

= $\frac{1}{2} \sigma t^4 (-\mu_0 \xi_0 \dot{H}_{S0})^2 2\pi r_0 \frac{\xi_0}{3} l_0$
= $\frac{1}{2} \frac{1}{6\pi} \sigma t^4 {\mu_0}^2 {\xi_0}^3 \omega^2 I_0^2 \quad [W]$ (17)

である [2]。ただし、 $l_0 = r_0$ と置いていた。極板では 中心軸から半径 r における表面磁場は、

$$H(0,r) = \frac{3I_0}{\pi r_0^2} \left(\frac{r}{2} - \frac{r^2}{3r_0}\right) \quad [A/m]$$

であるので [2]、前述の *E*_I(0) に対応する極板上の半 径 *r* の位置の表面誘導電場を *E*_I(0,*r*) と表すと、

$$E_I(0,r) = -\mu_0 \xi_0 \dot{H}(0,r)$$

= $-\mu_0 \xi_0 \frac{3\dot{I}_0}{\pi r_0^2} \left(\frac{r}{2} - \frac{r^2}{3r_0}\right) \ [V/m] \qquad (18)$

である。すると、両極板の損失の合計 W₁₂ は、

$$W_{I2} = 2 \int_{0}^{r_{0}} \frac{1}{2} \sigma t^{4} E_{I}(0, r)^{2} 2\pi r \frac{\xi_{0}}{3} dr$$

$$= 2 \frac{1}{2} \sigma t^{4} \mu_{0}^{2} \frac{\xi_{0}^{3}}{3} \frac{9\omega^{2} I_{0}^{2}}{\pi^{2} r_{0}^{2}} \int_{0}^{r_{0}} \left(\frac{r}{2} - \frac{r^{2}}{3r_{0}}\right)^{2} 2\pi r dr$$

$$= \frac{1}{2} \frac{12 \cdot 31}{16 \cdot 15 \cdot 9 \cdot \pi} \sigma t^{4} \mu_{0}^{2} \xi_{0}^{3} \omega^{2} I_{0}^{2}$$

$$\simeq \frac{1}{2} \frac{1}{6\pi} \sigma t^{4} \mu_{0}^{2} \xi_{0}^{3} \omega^{2} I_{0}^{2} \quad [W]$$
(19)

である。従って、ピルボックス内の損失 W_Iは、

$$W_{I} = W_{I1} + W_{I2}$$

= $\frac{1}{2} \frac{1}{3\pi} \sigma t^{4} \mu_{0}^{2} \xi_{0}^{3} \omega^{2} I_{0}^{2} \quad [W]$ (20)

となる。超伝導表皮電流 Io に対する表面抵抗 RI は、

$$R_I = \frac{1}{3\pi} \sigma t^4 \mu_0^2 \xi_0^3 \omega^2 \qquad [\Omega] \qquad (21)$$

$$=\sigma t^4 \times 7.08 \times 10^{-16}$$
 [Ω] (22)

となる。第2章の誘導Lにより $\omega L = 293.5 \Omega$ が得られることから、 R_I による無負荷Qを Q_{0I} と表すと、

$$Q_{0I} = \frac{\omega_2^1 L I_0^2}{\frac{1}{2} R_I I_0^2} = \frac{293.5}{R_I}$$
(23)

$$=\frac{4.14 \times 10^{17}}{\sigma t^4}$$
(24)

となる [5]。室温時の電気伝導率を $\sigma(300K)$ と表す と、(22) 式と(24) 式には $\sigma = \sigma(300K) \times RRR S/m \epsilon$ 代入することが必要である [6]。

5. まとめ

超伝導空洞表面の誘導電場により常伝導電流が生 じると考えた。超伝導体の電子比熱より超伝導体中 の常伝導電子数密度は $n_n = n_e t^4$ により近似できる ことに合理性がある。超伝導体の中でも常伝導電子 が古典論に従うと仮定すると表面抵抗 (21) 式が導か れる。これは BCS 理論など理論的なアプローチによ り得られる結果と同等と考えられる。

参考文献

- [1] 高田耕治 OHO 1997, "高周波加速".
- [2] M. Egi, Proceedings of the 18th Annual Meeting of PASJ, 2021, Takasaki, Japan, THP034.
- [3] N.E. Phillips, Phys. Rev. 134, 385 (1965).
- [4] M. Tinkham, "超伝導入門 第2版".
- [5] E. L. Ginzton, "Microwave Measurements".
- [6] K. Saito,「加速器」Vol. 2, No. 4, 2005 (479-493).