IMPROVEMENT OF THE PERFORMANCE OF THERMIONIC RF GUN BY CONTROLLING RF POWER

Yoko Nakai, Toshio Fukui, Heishun Zen, Koichi Kusukame, Toshiteru Kii, Kai Masuda, Hideaki Ohgaki, Tetsuo Yamazaki, Kiyoshi Yoshikawa Institute of Advanced Energy, Kyoto University Gokasho, Uji, Kyoto, 611-0011

Abstract

We have studied on improvement of electron beam macropulse properties from a thermionic RF gun. Though a thermionic RF gun has many salient features, there is a serious problem that back-bombardment effect worsens quality of the beam. To reduce beam energy degradation by this effect, we tried to feed non-flat RF power into the gun. As a result, we successfully obtained longer macropulse and larger total charge per macropulse.

On the other hand, we calculated transient evolution of RF power considering non-constant beam loading. The beam loading is evaluated from time evolution of cathode temperature, by use of one dimensional heat conduction model and electron trajectories' calculations by a particle simulation code. Then, we found good agreement between the experimental and calculation results.

高周波電力の制御による熱陰極型高周波電子銃の性能改善

1. はじめに

自由電子レーザー(FEL)の開発には電子ビームの 高輝度化が必要不可欠であり、これを狙って開発さ れた電子銃に、高周波電子銃がある。

しかし、熱陰極高周波電子銃では、陰極から引き 出された一部の加速電子が逆加速電界の影響を受け て逆加速され、陰極に衝突するback-bombardment現 象が起こる。この現象により陰極表面温度が上昇し、 陰極からの引き出し電流の制御が困難となる。そこ で我々の研究グループでは高周波電子銃への入射電 力波形を制御することで電子ビームのエネルギーを 一定に保つ実験を行った。また、粒子軌道シミュ レーションや陰極での熱伝導解析を通して陰極温度 の時間発展を求め、高周波電力の過渡解析を行った。

2. 実験原理

Back-bombardment現象が起こっている場合、マク ロパルス内の各ミクロパルス中でのピークエネル ギーは異なった値をとる事がPARMELA^[1]による計 算で確認されており、これらの値は高周波電圧の一 価関数で表されることも確認されている^[2]。本研究 ではback-bombardment現象による引き出し電流の増 加に伴うビームローディング電力の増大を、電子銃 への入射電力を増加させることで補う。これによっ てビームエネルギーをマクロパルス内で一定に保ち、 電子ビームのパルス幅と電流量の増加をはかる。

3.実験装置および測定系

本実験で用いた実験装置および測定系の概略図を 図1に示す。陰極には半径1mmの多孔質タングステ ンの含浸カソードを用い、陰極初期温度は1020℃と した。また入射電力の制御は、クライストロンに直 流パルス電力を供給する、高圧パルス形成装置の内 部可変リアクトルを遠隔で調節することによって 行った。またビーム特性の評価のために出力ビーム 電流波形、電子ビームのエネルギースペクトルの測 定を行った。

図1 : 実験装置および測定系

4. 実験結果

入射高周波電力波形を最適化する前と後の波形を 図2に示す。CT2で電流が観測され始めた時間を原 点とした。また、図3に波形制御後の10.3MeVにお けるビーム電流波形を、図4にビームエネルギーの 時間構造を示す。図3より、電流量のピークおよび パルス幅が共に増加したことがわかる。また図4に おいては、2µs程度で落ち込んでいたビームエネル ギーが、制御によって4µs程度まで維持されている ことがわかる。このことから電力波形の制御がビー ムの長パルス化、ビームエネルギーの安定化に対し て有効であることがわかる。

5. 解析方法

5.1 高周波電子銃内の電界の解析方法

高周波電子銃内の電界は図5に示す等価回路を用いて解析した。この回路上ではクライストロンを電流源として表現した。高周波電子銃はLCG。共振回路として表現される。また、ビームローディング電流を等価回路上において*I*blで表すと、電子ビームによって消費される電力は*I*blの電流源として表現され

る。ここでビームローディングを i_b 、電子ビームの 電流密度を J_b 、空胴の固有モードの電界を E_o 、その 電圧を V_o 、空胴壁で囲まれた体積を Ω 、真空の誘電 率を ϵ_0 とすると I_b は以下のように表される。

$$i_b(t) = -\frac{1}{\varepsilon_0 V_0} \int_{\Omega} J_b \cdot E_0 \mathrm{d}V \tag{1}$$

$$I_{bl} = \frac{2}{T} \int_{t}^{t+T} i_b(t) \cdot \exp(-j\omega t) dt$$
⁽²⁾

さらに*I*_bは*V*_cにほぼ比例するのでビームアドミッタ ンスY_bを用いて

$$I_{bl} = -Y_b \cdot V_c$$
(3)
と表すことができる。

解析に用いた回路定数は過去に行われた解析と同じ値を用いた。^[3]

以上のことをふまえると、上述の等価回路の回路 方程式は

$$L\frac{\mathrm{d}i_{\mathrm{L}}(t)}{\mathrm{d}t} = v_{\mathrm{c}}(t) \tag{4}$$

$$i_{g}(t) = i_{b}(t) + i_{L}(t) + v_{c}(t) \cdot (\beta + 1)G_{c} + C\frac{dv_{c}(t)}{dt}$$
 (5)

となる。さらに

$$v_{c}(t) = V_{c}(t) \cdot \exp(j\omega t)$$
(6)

$$i_{\mathbf{b}}(t) = Y_{\mathbf{b}} \cdot v(t) = Y_{\mathbf{b}} \cdot V_{\mathbf{c}}(t) \exp(j\omega t)$$
(7)

$$i_{\rm I}(t) = I_{\rm I}(t) \exp(j\omega t) \tag{8}$$

$$i_{g}(t) = I_{g}(t) \exp(j\omega t)$$
(9)

を用いると

$$\frac{\mathrm{d}V_{\mathrm{c}}(t)}{\mathrm{d}t} = \frac{1}{\mathrm{C}} \{ I_{g}(t) - Y_{b}(V) \cdot V_{c}(t) - I_{\mathrm{L}}(t) - (\beta + 1) \mathrm{G}_{\mathrm{c}} \cdot V_{\mathrm{c}}(t) \} - j\omega V_{c}(t)$$
(10)

$$\frac{\mathrm{d}I_{\mathrm{L}}(t)}{\mathrm{d}t} = \frac{1}{\mathrm{L}} \cdot V(t) - j\omega \cdot I_{\mathrm{L}}(t) \tag{11}$$

を得る。

(10)、(11)式を用いて後方差分法により数値解を 求め過渡解析を行った。またY_bは陰極引出し電流の 関数であるが、引出し電流はマクロパルス内で変化 するため、次に述べる解析方法によってこれを見積 もり、Y_bの時間構造を求めた。

5.2 陰極表面電流密度の時間構造の解析方法

ここでは各逆加速電子の持つエネルギーによる陰 極内部での発熱分布を一次元熱伝導方程式によって 計算した。陰極は厚さ2mmのタングステンと仮定し、 電子ビーム方向に2000分割したモデルを用いた。ま た解析を行うにあたって以下のように仮定している。 ・熱の放出は陰極表面からのみ生ずる。

・陰極への熱供給はヒーターと逆加速電子が与え

る熱量のみである。

- ・逆加速電子が失う運動エネルギーは全て熱量に 変換する。
- ・熱伝導は電子ビーム方向のみ生ずる。

Back-bombardment現象によって陰極に衝突する電子のエネルギー分布はPARMELAによって求めた。 さらにこれらの電子が陰極にどれだけのエネルギー を放出して停止するかを、飛程Rに関するTIOの式^[4] を用いて計算した。このTIOの式を以下に示す。

$$R = \frac{a_1}{\rho} \left\{ \frac{\ln[1 + a_2(\gamma - 1)]}{a_2} - \frac{a_3(\gamma - 1)}{1 + a_4(\gamma - 1)^{a_5}} \right\}$$
(12)

$$a_1 = 2.335 A/Z^{1.209} \qquad a_2 = 1.78 \times 10^{-4} Z$$

$$a_3 = 0.9891 - (3.01 \times 10^{-4} Z)$$

$$a_4 = 1.468 - (1.180 \times 10^{-2} Z)$$

$$a_5 = 1.232/Z^{0.109} \qquad \gamma = (E + m_0 c^2)/m_0 c^2$$

ただしRは飛程(m)、ρは吸収体の密度(kg/m³)、A は吸収体の質量数、Zは吸収体の原子番号、Eは電 子の運動エネルギー(MeV)を表す。これにより陰極 表面からの深さと単位深さあたりに失うエネルギー との関係を求め、分割された各スライスでの温度上 昇を計算した後、一次元熱伝導方程式を用いてスラ イス間での熱伝導の計算を行った。

6. 解析結果と考察

上記のコードを用いて波形制御前の高周波を入射 した場合の解析を行い、実験結果と比較した。図6 に高周波電力の反射波形、図7にビームエネルギー の時間構造を示す。ここで実験では陰極の初期温度 を1020℃としたが、解析の結果1082℃の場合が最も 実験値に近くなった。ここで、陰極表面の測温には 赤外線放射温度計を使用しているが、陰極に対して 集光レンズの向きが変わると測定温度は大幅に変化 する。正確な位置に設置されていることを確認する ことは非常に困難なため色温度計で校正しているが これも不確かなものである。そのため測定温度は実 際値と誤差があったとし、実験値との比較には 1082℃での解析結果を用いている。また、反射波お よびビームエネルギーの測定値についても不確かな 点があり、前者については0µsから4µsでの電力ピー ク値で、後者についてはマクロパルス中の最大値で 規格化を行っている。これらの結果より、波形制御 前では、本研究での解析コードはマクロパルス内で 実験値をよく再現できるものであると言える。

7. まとめと今後の課題

本研究では、マクロパルス内でのビームエネル ギーを一定にするために波形制御した高周波を入射 した。これにより図3に見られるようにビームのパ ルス幅が大幅に伸び、電流量も増加した。また、高 周波電子銃内での電力過渡解析を行った結果、非常 によく実験値を再現することができた。ただし、こ の解析は波形制御を行う前の高周波を入射した場合 のものであるので、波形制御を行った場合について も確認する必要がある。その上で今後、FEL発振に 必要な条件を満たすビーム生成に必要な諸条件を検 討する。

また、我々のグループにおいて高周波電子銃を三 極管構造にした場合の有効性が粒子シミュレーショ ンによって確認されており、三極管型高周波電子銃 を用いた場合の波形制御の効果についても検討を行 う。

8. 参考文献

[1]Loyd M. Young, James H. Billen: LA-UR-96-1835 (2002) [2]早川和史:京都大学エネルギー科学研究科エネルギー 応用科学専攻修士論文(2005)

[3]池田竜太:京都大学エネルギー科学研究科エネルギー 変換科学専攻修士論文(2000)

[4]M. J. Berger and S. M. Seltzer : STOPPING POWER AND RANGES OF ELECTRONS AND POSITRONS (2ndEd.), NBSIR(1982)