Magnetic field measurement of the first model of the edge-focusing wiggler

T.Noda^{* A)}, R.Kato^{A)}, S.Kashiwagi^{A)}, G.Isoyama^{A)}, S.Yamamoto^{B)}, K.Tsutiya^{B)}

 A) Institute of Science and Industrial Reserch, Osaka University 8-1 Mihogaoka Ibaraki, Osaka, 567-0047

B) Institute of Materials Structure Science, High Energy Accelerator Reserch Organization 1-1 Oho, Tsukuba, Ibaraki, 305-0801

Abstract

We are developing the Edge-Focusing(EF) wiggler as an focusing wiggler. It is based on a Halbach type wiggler made only of permanent magnet blocks but their magnet have trapezoidal or rhomboid shape that makes field gradient. The first model of the edge-focusing wiggler were fabricated to evaluate its performance. Measuring its field strength, it was demonstrated that a high field gradient is realized along the beam axis in the EF wiggler and matched numerical calculation. We report the result of magnetic field measurement of the EF wiggler.

エッジフォーカスウィグラー試作機の磁場測定

1. はじめに

大阪大学産業科学研究所(阪大産研)では SASE (Self-Amplified Spontaneous Emission)のための集束 型ウィグラーの開発研究を進めている。一般的な Halbach型 planar ウィグラーでは、電子ビームに対して 鉛直方向には自然集束力が存在するが、水平方向に は集束力が無い。そこで水平方向にも集束力をもつ 集束ウィグラーが考案され国外の研究機関などで研 究開発が行われている。我々は独自の集束ウィグラー であるエッジフォーカス(EF)ウィグラーを提案し、 研究開発を進めている。EF ウィグラーの磁石形状は、 Halbach型 planar ウィグラーに用いる長方形永久磁石 を、縦磁化磁石は台形、横磁化磁石は平行四辺形に したものである。こうすることにより、水平方向に磁 場勾配が発生し、電子ビームに対して水平、鉛直両 方向に集束作用を与えることが可能になる。EF ウィ グラーが電子ビームに与える自然集束力 ko、および 水平、鉛直両方向の集束力 kx、ky は近似的に次のよ うに表すことができる [1]。

$$k_0 = \frac{8 - \pi}{3\pi} \left(\frac{e}{m_0 c}\right)^2 \left(\frac{B_0}{\gamma}\right)^2 \tag{1}$$

$$k_x = \frac{4e}{m_0 c} \frac{B_0}{\gamma} \frac{\phi}{\lambda_u} = \frac{1}{B\rho} \frac{dB_y}{dx}$$
(2)

$$k_y = k_0 - \frac{1}{B\rho} \frac{dB_x}{dy} = k_0 - k_x$$
 (3)

ここで、 B_0 はピーク磁場、 ρ は曲率半径、 γ は電子 の規格化エネルギー、 ϕ はエッジ角である。エッジ フォーカスウィグラーは、通常の planar ウィグラーと 長さは変らず、また永久磁石の構造がシンプルなの で製作が容易であり、更に磁極間隔にも影響を与え ることがないのが利点である。EF ウィグラーの開発 研究は、これまでに数値計算による特性評価、およ び試作機製作とその磁場測定が行われてきた [2–4]。

į

本発表では試作機の磁場測定結果、および数値計算 結果との比較検証について述べる。

- 2. エッジフォーカスウィグラー試作機
- 2.1 試作機の構造

試作機の磁石配列の写真を図1に、パラメータを表 1に示す。ブロックサイズ等の基本的なパラメータは 阪大産研Lバンドライナックにインストールされて いる planar ウィグラーに基づいたものである。エッジ 角は、我々の SASE 実験で用いる 11MeV の電子ビー ムに対して、式(2)、(3) より $k_x = k_y$ となるように 2 度に設定した。

2.2 測定装置

磁場強度の測定は KEK で行った。測定装置の概要、 および座標系を図2に示す。測定は、鉛直方向(y方 向)と水平方向(x方向:電子の蛇行運動面)の磁場 を測定するため2つのホール素子を用いた。ホール素 子はリニアステージに取り付けられ、x座標とy座標 を固定してビームの進行方向(z方向)に沿って1mm

図 1: EF ウィグラー試作機の磁石配列(片面)

^{*} E-mail: noda25@sanken.osaka-u.ac.jp

残留磁場	B_r	1.32 T
ブロックサイズ	2a	100 mm
	2b	20 mm
	2c	15 mm
ギャップ	g	$30 \sim 60 \text{mm}$
周期長	Ā	60 mm
周期数	Ν	5
エッジ角	ϕ	2 deg
		-

表 1: EF ウィグラー試作機のパラメータ

間隔で移動させた。位置読み取り精度は 5μ m である。 また、ホール素子の温度変化を 0.01°C 以内に抑え、 温度による磁場測定誤差が 0.1 Gauss 程度に収まるよ うにした。ウィグラー試作機のギャップの幅は側面の 支柱を交換することで変化させた。今回の測定では 30,40,50,60mm の 4 種類の支柱を用意した。

2.3 磁場特性

まず、図3にギャップ30mmとしたときのウィグ ラー軸上(x=0, y=0)の鉛直方向成分 B_y の測定と 計算結果を示す。この図3より実測値は数値計算結果 とほぼ一致しているのが確認できる。次に、図4に B_x の分布を示す。本来、ウイグラー軸上ではビームを鉛 直方向にキックする磁場成分 B_x は存在しないが、今 回の測定では周期性をもった最大8Gauss(ギャップ 30 mm)の B_x が測定された。このウイグラー軸上で の B_x は横磁化磁石上で大きな値をしめす傾向がある。 EF ウイグラーでは鉛直方向にも磁場勾配 dB_x/dy が 存在し(横磁化磁石の中心で最大) y=0の平面(中 間平面)で B_x は丁度ゼロとなる。測定された B_x は この中間平面が磁石の僅かな強度差によって上下に ずれたためだと思われる。

2.4 磁場勾配

次に、ウィグラー軸上における水平方向の磁場勾配 分布を図5に示す。水平方向の磁場勾配はx=±5mm の範囲でのリニアフィットにより求めたものである。 磁場勾配はz軸に沿って周期性を持ち、縦・横磁化磁 石ブロックの中心で極値をとる。計算値と比較する と、実測値は縦磁化磁石上においてはほぼ一致して いるものの、ウィグラー半周期ごとの横磁化磁石上 に磁場勾配の大小ができていることがわかる。

この原因を明らかにするために、まず磁石の磁場 強度や磁化軸の異常などを考慮に入れて計算を行っ

図 4: *B_x* と *dB_x/dy* の分布 (ギャップ 40 mm)

たが、測定結果を反映することはできなかった。次 に、ウィグラーの初期セッティングや、測定のシス テマティックなエラーの可能性について調べた。×軸 方向にホール素子を移動させるリニアステージの軸 が、z軸に対して垂直にセットされずに僅かな角度 傾いていたと仮定し測定データに補正を加えた。図6 はウィグラー軸と×軸が3mradだけ傾いているとし て $x = \pm 5$ mmの測定データにそれぞれz座標の補正 を $dz = \pm 15\mu$ mだけ与え、磁場勾配を求めたもので ある。その結果、計算値とよく一致しているのが確 認できる。このことから、、実測値に見られた磁場勾 配の周期的な異常は、ウィグラー軸と×方向の測定 軸とが垂直から僅かに傾いていたためと考えられる。 Proceedings of the 2nd Annual Meeting of Particle Accelerator Society of Japan and the 30th Linear Accelerator Meeting in Japan (July 20 - 22, 2005, Tosu Japan)

また、図 4 下に示すように磁場の水平方向成分の 磁場勾配 dB_x/dy も発生する。絶対値は dB_y/dx と同 じで符号は逆であり、また同様の周期性を持つ。

EF ウィグラーが電子ビームに与える鉛直方向の集 束力は、planar ウィグラーの場合の自然集束力とこの dB_x/dy による集束力との差によって与えられる。

2.5 磁極間隔依存性

次にピーク磁場 B₀ と磁場勾配 dB_y/dx のギャップ 依存性を調べた結果が図7 である。ただし磁場勾配 はウィグラー中心の1周期分の平均値を示した。ピー ク磁場、磁場勾配ともに数値計算結果とほぼ一致し た傾向を示している。また、ギャップを広げていくに

図 7: ピーク磁場強度、磁場勾配のギャップ依存性

したがって、磁場勾配はピーク磁場より緩やかに減 少していくことがわかる。これはギャップを広くして ウィグラー磁場が減少しても、ビームに対して強い 水平方向の集束力を与えることが可能であることを 意味する。

3. まとめと今後の展開

EF ウィグラーの試作機を製作し、その磁場測定を KEK で行い計算値との比較を行った。水平方向の磁 場勾配に関して計算値と測定値との間で一致しなかっ たが、x方向のホール素子の移動軸とウイグラー軸と 垂直が完全に取れていなかったことを考慮し、実測値 から補正を加えて磁場勾配を求めると良い精度で計 算値と一致した。また、磁場強度と磁場勾配のギャッ プ依存性を測定したところ、数値計算とほぼ一致し た結果が得られた。そして、鉛直方向のピーク磁場 強度 B_0 と磁場勾配 dB_y/dx とのギャップ依存性が異 なることもわかり、エッジフォーカスウィグラーでは ギャップを広げた場合にも強い集束力を得る事が可能 である。阪大産研 L バンドライナックへ導入する EF ウィグラー実機の製作は2005年4月に完成し[5]、磁 場調整と磁場測定を4、5月に KEK にて行った [6]。 6月下旬より阪大産研Lバンドライナックで実際に 電子ビームを用いて EF ウィグラーによる SASE 発生 実験を行う予定である。

参考文献

- [1] G. Isoyama et al., Nucl. Instr. and Meth. A 507 (2003) 234
- [2] M.Fujimoto, et al., Symposium on Accelerator Science and Technology (2001) 461
- [3] A. Mihara, et al., Symposium on Accelerator Science and Technology (2003) 2P-071
- [4] S. Kashiwagi et al., Proceedings of the 26th International FEL Conference, Trieste, Italy, Aug. 29-Sep. 3, p458, 2004
- [5] 野田孝典 他 本報告集
- [6] 柏木茂 他 本報告集