
HIGHER AVAILABILITY WITH ATCA AND REDUNDANT IOC

○ A.Kazakov1,2,K.Furukawa1, M.Satoh1, T.Suwada1, S.Michizono1
1高エネルギー加速器研究機構(KEK)、2総合研究大学院大学(SOKENDAI)

Abstract

Reliability issues for modern accelerator machines become more and more important due to constantly growing and
complexity of the machines. Redundant IOC for EPICS was introduced in 2006 and ported to Linux in 2007. Redundant
IOC is aimed to provide redundancy and high availability for critical parts of an accelerator control system. The core of
EPICS redundant IOC is Redundancy Monitoring Task (RMT). In this work Advanced Telecommunication Computing
Architecture (ATCA) driver to RMT (and therefore to EPICS redundant IOC) is being developed. ATCA is a popular
standard for new designs and installations of control systems. ATCA was suggested as a base architecture for
International Linear Collider (ILC) control system. This paper describes the implementation of an EPICS redundant
IOC (RIOC) in a PC-based environment with Linux or other Unix-like EPICS-supported OS’s and benefits of using
ATCA as platform for RIOC.

1. Introduction

An EPICS redundant IOC was originally developed at
DESY. Two major fields of application were defined:

1. Redundancy for cryogenic plants. In this case, the
failure may be caused by malfunctioning hardware such
as power supplies or fans. An automatic fail-over
mechanism should guarantee system stability. However,
over the years it was sometimes necessary to manually
switch between the main and backup processors due to
maintenance work during the runtime period (which is
usually one year or more). It might be useful for a
software update. While the current commercial system
used at DESY allows online updates of the database,
EPICS does not allow addition or deletion of records
and databases during operation.

2.Redundancy for controllers in the XFEL tunnel.
Although the main origin of switch-over in the first case
would be a manual action, it is expected to occur
automatically in the XFEL tunnel. Due to high radiation,
damage to the CPU and memory is highly possible. The
software update is not very important because of more
frequent maintenance days when this operation may be
performed.

By the design draft one major goal was set: Any
redundant implementation must make the system
more reliable than the nonredundant one. Precaution
must be taken especially for the detection of errors
that shall initiate the fail-over. This operation should
only be activated if there is no doubt that maintaining
the actual mastership definitely causes more damage
to the controlled system than an automatic fail-over.
The fail-over time in any case was defined to be more
than several seconds and less than 15 s. The final
implementation could switch in less than 2 seconds.

Originally, the project was intended to support only
vxWorks and the written code was very specific to it.
However, later it was observed that support for other

operating system is desirable. Here at KEK we use a
software-IOC on Linux which functions as a “gateway”
from an old control system to the EPICS-environment. In
addition, for the ILC project ATCA-based systems under
Linux control will be used. Redundant IOCs are highly
desirable for this project. Thus, the redundant IOC has
been ported to EPICS libCom/osi; this implies that the
current implementation should work on any EPICS-
supported OSs.

2. Hardware Architecture
The hardware architecture consists of two redundant

IOCs controlling a remote I/O via shared media such as
the Ethernet or MIL1553. The redundant pair shares two
network connections for monitoring the state of health of
their counterpart, where the private network connection is
used to synchronize the backup to the primary and the
global network is used to communicate data from the
primary to any other network clients requiring the data.

USING EPICS REDUNDANT IOC IN UNIX ENVIRONMENT*

A. Kazakov**, SOKENDAI/KEK, Japan
K. Furukawa, KEK, Japan

M. Clausen, G. Liu, DESY, Germany

Abstract

A redundant Experimental Physics and Industrial
Control System (EPICS) input output controller (IOC) is
being actively developed at Deutsches Elektronen-
Synchrotron (DESY) in order to achieve high availability
of control software. The current development focuses on a
VME vxWorks environment for cryogenic controls.
However, many scientific facilities use PC-architecture
and Unix-like systems such as Linux, Solaris, and
Darwin. These facilities require high availability and
redundancy. Therefore, this paper describes the
implementation of an EPICS redundant IOC in a PC-
based environment with Linux or other Unix-like EPICS-
supported OSs. This is achieved by porting a redundancy
monitor task (RMT) and continuous control cxecutive
(CCE). The CCE is used to synchronize two RSRV-based
IOC servers. The RMT monitors other parts of the
system, maintains the connection with the partner, and
decides when to fail-over. It is rather independent and
may be used in a wide range of applications. It has been
successfully employed to add redundancy to a CA
gateway.

INTRODUCTION

An EPICS redundant IOC was originally developed at
DESY. Two major fields of application were defined:

1. Redundancy for cryogenic plants. In this case, the
failure may be caused by malfunctioning hardware such
as power supplies or fans. An automatic fail-over
mechanism should guarantee system stability. However,
over the years it was sometimes necessary to manually
switch between the main and backup processors due to
maintenance work during the runtime period (which is
usually one year or more). It might be useful for a
software update. While the current commercial system
used at DESY allows online updates of the database,
EPICS does not allow addition or deletion of records and
databases during operation.

2.Redundancy for controllers in the XFEL tunnel.
Although the main origin of switch-over in the first case
would be a manual action, it is expected to occur
automatically in the XFEL tunnel. Due to high radiation,
damage to the CPU and memory is highly possible. The
software update is not very important because of more
frequent maintenance days when this operation may be
performed.

By the design draft one major goal was set: Any
redundant implementation must make the system
more reliable than the nonredundant one. Precaution
must be taken especially for the detection of errors
that shall initiate the fail-over. This operation should
only be activated if there is no doubt that maintaining

the actual mastership definitely causes more damage
to the controlled system than an automatic fail-over.
The fail-over time in any case was defined to be more
than several seconds and less than 15 s. The final
implementation could switch in less than 2 seconds.

Originally, the project was intended to support only
vxWorks and the written code was very specific to it.
However, later it was observed that support for other
operating system is desirable. Here at KEK we use a
software-IOC on Linux which functions as a “gateway”
from an old control system to the EPICS-environment. In
addition, for the ILC project ATCA-based systems under
Linux control will be used. Redundant IOCs are highly
desirable for this project. Thus, the redundant IOC has
been ported to EPICS libCom/osi; this implies that the
current implementation should work on any EPICS-
supported OSs.

HARDWARE ARCHITECTURE

The hardware architecture consists of two redundant
IOCs controlling a remote I/O via shared media such as
the Ethernet or MIL1553. The redundant pair shares two
network connections for monitoring the state of health of
their counterpart, where the private network connection is
used to synchronize the backup to the primary and the
global network is used to communicate data from the
primary to any other network clients requiring the data.

SOFTWARE COMPONENTS

The current design contains three major parts: RMT
(redundancy monitoring task), CCE (continuous control
executive) and SNL (state notation language) executive.

Figure 1: Hardware Architecture

Figure 1: RIOC Hardware Architecture

-837-

Proceedings of the 5th Annual Meeting of Particle Accelerator Society of Japan
and the 33rd Linear Accelerator Meeting in Japan (August 6-8, 2008, Higashihiroshima, Japan)

3. Software Components
The current design contains three major parts: RMT

(redundancy monitoring task), CCE (continuous control
executive) and SNL (state notation language) executive.

Normal IOC

CCE

RMT

s
c
a
n

 ta
s
k

c
a
 s

e
r
v

r

RMT

Driver

RMT

Driver

RMT

Driver

Figure 2: RIOC internals

The latter two are responsible for the synchronization of
process variables (PVs) and internal states. The RMT is
the core of the redundant system. It establishes and
maintains the connection with the partner, controls other
parts of the system and decides when to fail-over. All
other components that have to be controlled by the RMT
share the same software interface (which is defined in a
header file rmtDrvIf.h). This interface defines the
following functions:
1. start: Get access to the IO and start processing.
2. stop: Do not access the IO and stop processing.
3. testIO: Initiates a procedure to test access to the IO.
4. getStatus: Get status of the driver.
5. shutdown: This function is called before the IOC is

rebooted. It terminates transient activities,
deactivates interrupt sources and stops all driver
tasks.

6. getUpdate: This routine tells the component to get an
update from the redundant IOC. It is normally
called by the RMT on the inactive IOC.

7. startUpdate: This routine tells the component to start
updating data from the redundant IOC
(monitoring). It will first read all fields
(depending on the mode) from the redundant
partner. It is normally called by the RMT on the
inactive IOC.

8. stopUpdate: This routine tells the component to stop
updating data from the redundant counterpart.
This routine is normally called by the RMT on
the inactive IOC.

The RMT can call these functions using an entry table
that is transferred from the component to the RMT during
initialization. The component calls the

rmtRegisterDriver() function to register itself in the RMT
and transfer the entry table.

CCE and the SNL executive are two such RMT-
controlled components and they implement the RMT-
driver interface mentioned above. Other components may
be IO drivers, or any other piece of software. For
example, the RSRV server in redundant IOC
implementation is one of the RMT-controlled components
and it implements the RMT-driver interface. Some of the
interface functions may be unimplemented (set to NULL
in the entry table) depending on the nature of the IO-
driver and the tasks it performs.

4. Porting to libCom/OSI
Originally, all the developments were done only for

vxWorks. The resulting code was not usable on any other
OS. However, the people at KEK were interested in using
a redundant IOC on Linux machines for a LINAC control
system. Moreover, at DESY there was a demand for a
redundant CA gateway. It appeared that the RMT has all
the functionality needed for the solution. However, CA
gateway runs on Linux (or other Unix-like OS), and the
RMT was available only on vxWorks. Thus, it was
decided to port the redundant IOC to Linux.

The ported OSI version of the redundant IOC was
successfully used on vxWorks, Linux, Mac OS X, and
Solaris. Tests showed that the system synchronisation
speed limit was around ~5000 records/second for 2 Linux
machines with 3GHz P4 1core, 2x 100Mbit Ethernet
cards; functioning solely as a redundant IOC

5. AdvancedTCA
Advanced Telecommunications Computing

Architecture (ATCA) is a new standard in telecom
industry. Originally ATCA specification was designed
with high availability in mind to be used in wide
variety of applications requiring higher availability.

Every ATCA shelf consists of the following major
parts[1]:

1. Subrack providing attachment points for the
Backplane, as well as alignment, support, and
mechanical engagement for the insertion and
extraction of Front Boards and RTMs.

2. Backplane providing connector interfaces for
power distribution and input/output
connectivity between Front Boards.

3. Rear Transition Module (RTM) installed in the
rear part of the shelf and mated to Front Boards.

4. Front Boards containing the desired electronic
functions and the connectors required to interface
with these functions.

AdvancedTCA provides for extensive management
capabilities, which may be used by the overall System
Manager. The Shelf Management system does the
following:

• Monitors, controls, and assures proper operation of

-838-

Proceedings of the 5th Annual Meeting of Particle Accelerator Society of Japan
and the 33rd Linear Accelerator Meeting in Japan (August 6-8, 2008, Higashihiroshima, Japan)

AdvancedTCA Boards and other Shelf components
• Watches over the basic health of the system, reports
anomalies, and takes corrective action when needed
• Retrieves inventory information and sensor readings
as well as receive event reports and failure notifications
from Boards and other Intelligent FRUs
• Performs basic recovery operations such as power
cycle or reset of managed entities
• Provides low-level hardware management services to
manage the power, cooling, and interconnect resources
of a Shelf

One of the key components of ATCA Shelf
Managements system is Shelf Manager board (preferably
redundant). The Shelf Manager does the following:

• Watches over managed devices, reporting anomalous
conditions to the System Manager and taking whatever
corrective actions it can to prevent system failure
• Handles hot-swap events from removable devices,
indicating their entry into the Shelf and detecting their
shutdown or removal
• Negotiates power budgets with Boards and other
FRUs so that the Shelf operates within those capacities.
• Initiates changes in fan levels when event messages
show that temperatures are outside of prescribed
bounds.

The management is realized via Intelligent Platform
Management Bus (IPMB), which is a part of Intelligent
Platform Management Interface (IMPI) architecture.

6. Advanced TCA and RIOC
ATCA platform uses redundancy internally for

management system connections, shelf managers,
backplane interconnections, network subsystem.
Therefore it is a good basis for critical applications in
accelerator control systems. ATCA was chosen as a
standard for future ILC control system. But just
running EPICS IOC’s on the ATCA-standard CPU
board does not make it redundant, even if there is
another identical board. To solve this problem
Redundant IOC should be utilized.

Ported to OSI library version of RIOC was
successfully tested to run in ATCA-standard shelf.
This configuration provides EPICS redundancy, which
is essential for critical tasks and based on highly
reliable ATCA standard.

7. ATCA driver for RMT and RIOC

Running RIOC in ATCA shelf is great in the sense of
delivering better availability, but it does not utilize any of
ATCA management features available.
A lot of management and health information can be
retrieved via Shelf Manager board. This information can
be acquired using Hardware Platform Interface. Hardware

Platform Interface specification separates the hardware
from management middleware and makes each
independent of the other. Therefore, an application
developed using HPI should be independent from
particular hardware realization.

Using OpenHPI library an RMT-driver for ATCA is
going to be implemented. Via this driver RMT can get
information about health status of the partner board and
the shelf itself. This information can give an ability to
predict the failure and initiate a failover process before
actual hardware starts to fail. For example if for some
reason the temperature on the master board starts to raise,
RMT could switch over to a slave board when the master
board is still running. Therefore the failover happens in
more stable and controlled environment. Because the
hardware is not failing channel access connections could
be gracefully closed and clients would initiate the
reconnect procedure immediately after switchover to
slave IOC. In a matter of a second all the connections
would be restored and total control is regained. In case of
typical scenario when the connections are not closed
gracefully it takes 30 seconds for clients to reconnect to
slave IOC.

Shelf-manager

HPI Daemon

Self-management controller

SNMP Agent

Blade

RMT

EPICS IOC

HPI-Library

FANS

IPMC

Blade1 sensors

IPMC

Blade2 sensors

IPMC

...

IPMC

...

IPMC

...

IPMC

Redundant IPMB

ip

Figure 3: RIOC and ATCA driver

Summary
Porting redundant IOC to Unix-environment allowed

a much wider application of this system. It was shown
that the RMT functioning as the core of the redundant
system can be utilized to add redundancy to other
software. And it can be used to build highly reliable
redundant systems based on ATCA-standard.
Development of RMT driver to support ATCA-
management system will deliver even better stability and
performance.

[1] AdvancedTCA, PCIMG 3.0 Short Form Specification,

January 2003.

-839-

Proceedings of the 5th Annual Meeting of Particle Accelerator Society of Japan
and the 33rd Linear Accelerator Meeting in Japan (August 6-8, 2008, Higashihiroshima, Japan)

