LATTICE DESIGN OF TWO-LOOP COMPACT ERL

Miho Shimada^{#,A)}, Kentaro Harada^{A)}, Akira Ueda^{A)}, Yukinori Kobayashi^{A)}, Ryoichi Hajima^{B)}

^{A)} High Energy Accelerator Research Organization, KEK

1-1 OHO, Tsukuba, Ibaraki, 305-0801

^{B)} Japan Atomic Energy Agency, JAEA

2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki, 319-1195

Abstract

Two loop scheme is a strong candidate for the 5-GeV Energy Recovery Linac (5-GeV ERL) for saving the costs of superconducting accelerators, cryogenic facilities and a building site, and so on. The lattice design of the Compact ERL (cERL) is in progress as a test facility of the two loop ERL for studying the beam dynamics and developing the operation skill and beam monitoring system. This paper is the first report of the linear optics after refinement of the lattice design.

2 ループ Compact ERL のラティス設計

1. はじめに

KEK 敷地内に建設予定の5 GeV エネルギー回収 型線形加速器(ERL)は、超伝導加速空洞や冷凍機設 備のコスト、敷地面積の制限から、2回の加速で5 GeV を達成する2ループ案が有力候補として挙がっ ている[1]。しかし、2 ループ ERL では、高次モー ドによるビーム・ブレーク・アップ(BBU)や CSR wake などの影響が大きくなるなど、低エミッタン スビームの実現が困難になることが懸念されている。 さらに、ビーム診断やオペレーションも複雑になる。 その2ループによる様々な問題点を解決するため の試験機としてのコンパクト ERL (cERL)の計画が 進められている。現在、建設が本格的に開始され、 ラティスデザインが急がれている。すでに、ブド ガー原子核物理学研究所では、繰り返し 180 MHz の常伝導加速空洞で多重ループ ERL の運転に成功 しているが[2]、1.3 GHz の超電導加速空洞による試 みは初めてであり、各研究施設の注目を集めている。 2 ループ cERL のラティスはオプティクスの計算

2 ルーク CERL のファイスはオファイクスの計算 結果を元に改良を重ねている。本稿では、設計方針 について説明をした後、改良したラティスデザイン の線形オプティクスについて報告する。

2. ラティスデザインの改良

2 ループ cERL のラティスを図 1 に示す。500 kV の高輝度 DC 電子銃で生成された電子ビームは、入 射器用超伝導加速空洞で 5 MeV まで加速された後、 周回部に合流する。周回部の主加速器で加速勾配 15 MV/m が達成されると想定すると、1 回の加速で 120 MeV のエネルギーが電子ビームに与えられる。 この 125 MeV の電子ビームは内側ループを周回し、 再び主加速器で加速され、最大 245 MeV に到達す る。外側ループを周回した後に、主加速空洞の減速 位相に乗った電子ビームはエネルギーを回収され、 再び内側ループを通過した後に 2 回目のエネルギー 回収が行われる。最終的に 5 MeV になった後に 500 MW ビームダンプに誘導される。

主加速空洞は段階的に拡張する予定であり、初期 の段階では2セルのクライオモジュールが1台のみ で、1回の加速で電子に与えるエネルギーは30 MeV である。一方で、入射エネルギーは初期の段 階から5 MeV を想定している。これは、低い入射 エネルギーでエミッタンスが増加してしまうことを 避けるためであるが、内側と外側ループのエネル ギーが最終的な段階と異なり、中心軌道のずれが発 生する。

当初はこの中心軌道のずれを3つの偏向電磁石からなる分岐シケインで自動的に軌道が補正される仕組みになっていた。しかし、設置面積が大きいこと、4極電磁石のない分岐シケインで過収束が起こり、 過度にビームサイズが小さくなってエミッタンスが増加する恐れがあることから、一つの分岐用偏向電磁石に2つのステアリング電磁石を組み合わせて、 適宜軌道を補正する方法を採用した。この改良によって、主加速空洞の前後に位置補正機構を設置するためのスペースを追加することが可能になった。

図1:2ループ cERL のラティスデザイン。

3. 線形オプティクスの設計方針

2 ループ ERL のオプティクスの特徴は以下の 3 点 である。

- 1. 主加速空洞の直線部に 4 つのエネルギーの電子ビームが通過する。
- 2. 内側ループは2回通過する。
- ダンプ直前の 5MeV 電子ビームではエミッタンスが増加している可能性があるため、ベータ関数が小さいほうが望ましい。

このようなラティスで入射直後から順を追ってオプ ティクスを設計すると、徐々に調整可能な4極電磁 石がなくなり、 β 関数を適切な大きさに抑えること ができなくなってしまう。そこで、主加速空洞のあ る加速直線部と2つのループを切り離して設計する 方針を提案した。図2にその模式図を示す。入射合 流部からダンプへの取り出しシケインまでの直線部 全体で、適切な β 関数になっているかを確認しなが ら4 極電磁石の調整を行う。ここで、内側・外側 ループの β 関数は左右対称に設計するものとし、仮 のオプティクスで繋げる。

さらに β 関数の最適化を簡略化するため、加速直 線部および 2 つのループの 4 極電磁石の配置および K 値がほぼ左右対称になるようにした(図 3)。す ると、加速と減速のオプティクスがほぼ対称的な形 状になるため、加速の場合のみ最適化すればよい。 基本的に最もエネルギーの低い電子ビームに最適化 する方針である。しかし、図 3 の QS2 や M1, M2 を 通過する 2 つの電子ビームはエネルギー比が小さい ため、高エネルギービームのオプティクスにも注意 を払う。

図2:2ループのラティスを直線上に配置した図

図 3: 左右対称のオプティクスの設計方針。同じ記 号の 4 極電磁石の K 値、および※の twiss parameter は左右対称とする。

内側のループのアイソクロナス・アクロマットは 偏向電磁石間のトリプレット(QAI)で行い、加速 直線部とは独立して最適化をする。トリプレットの 極性は K 値が小さい DFD を採用した。その後、 マッチングのための 4 極電磁石(M)を用いて、加 速直線部と繋げる。外側ループはすでにマッチング セクションの K 値が独立に調整できないため、加 速直線部および内側ループのオプティクスが決定し た後に繋げていく。

また、入射合流部の Twiss parameter に対する柔軟 性も必要とされる。電子銃直後から入射合流部まで は、電子のエネルギーが低いため、空間電荷効果な どの非線形効果によるエミッタンス増加が大きい。 そのため、入射する電子のエネルギーなどの条件に よって、最適なオプティクスが大きく異なることが 予想され、そのような各々の条件に対してオプティ クスを見つける必要があるためである。

4. 2 ループ cERL の線形オプティクス

計算コードは elegant を使用した。このコードで は J. Rosenzweig の定在波型空洞のモデルを容易に取 り込むことができ[3]、また CSR wake などを入れた 粒子トラッキングが可能であるためである。 線形 オプティクスを設計する際に、主加速空洞の位相を on crest に固定し、また 4 極電磁石の K 値を 2 以下 に制限した。(K 値の定義は K1 = ($e\partial B/\partial x L$)/P と する。ここで、B、L、e および P は磁束密度、磁極 長、電子の電荷量および運動量である。)

3 章で示した方針に従って計算したオプティクス を図 4 に示す。 3 つのベンドからなる入射合流部 直後では、Twiss parameter の最適解は xy 面上に対 して楕円のプロファイルを持つ。ここでは、(β_x , a_x , β_y , a_y) = (13 m, -2, 0.7 m, 0)とした場合の結果を載せ た。 β 関数の最大値は加速空洞と反対側の直線部で β_x が 57 m であった。4 極電磁石の K 値は最大と なったのは外側のアーク部でおよそ 2 に近い値に なった。これは、内側ループに比べて大きいが、パ ラメータが多く、最適な極性が見つかっていないこ とも原因と考えられる。

次に、入射合流部の Twiss parameter の変化に対す る柔軟性を確認するため、cERL 入射器で最適化し た暫定の Twiss parameter の組み合わせで 2μ -プの オプティクスを同じ手法で計算した。その結果を図 5 に示す。 図 4 のケースに比べて、 β 関数が入射合 流部出口で大きいため、周回部全体的に渡ってβ関数が大きくなってしまった。また、合流部直後の4 極電磁石で2.5 近くのK値が必要であることが分かった。

5. まとめ

改良したラティスにおいても、これまでと同じ手 法で線形オプティクスが求めることが可能であるこ とが確認された。また、幅広い入射合流部の Twiss parameter に対して周回部のオプティクスに解があ ることが確認できた。

参考文献

- [1] S. Sakanaka et al., in these proceedings, FSRP09.
- [2] N. A. Vinokurov et al., IPAC'10, pp. 2427-2429.
- [3] J. Rosenzweig and L. Serafini, Phys. Rev. E, **49**, (1994) 1599-1602

図 5:入射合流部出口で(β_x , a_x , β_y , a_y) = (47.1 m, 1.65, 21.5 m, 5.52)としたときの周回部の線形オプティクス