Measurements of Temporal Evolution of Quantum Efficiency Spectrum of NEA-GaAs Photocathode

Y. Masumoto^{* A)}, M. Kuriki ^{A)}, H. Iijima ^{A)}, D. Kubo ^{A)} Grad. Sch. for Advanced Sciences of Matter, Hiroshima Univ, Higashi-hiroshima

Abstract

We study GaAs photo-cathode for a high brightness electron source. The Negative Electron Affinity (NEA) surface is essential for GaAs to activate as an electron source. By artificial treatments, NEA surface is made on GaAs, so that electron beam can be extracted to vacuum with a laser pulse, whose energy corresponds to the band gap. In this article, we measured temporal evolution of quantum efficiency spectrum of NEA-GaAs photo-cathode during activation and after activation. We found that the spectrum evolution during the activation and after activation are just temporary reversed. To explain the spectrum evolution, we assume a photo-electron emission model, where the NEA surface is approximated with a potential wall. According to our study, the spectrum evolution could be explained by variations on the height and width of the potential wall.

NEA-GaAs 光陰極における量子効率の波長依存と時間推移の測定

1. はじめに

Energy Recovery Linac (ERL)等の先進的加速器計 画において、電子源は加速器全体の性能を決定する 重要な役割を担っている。ERL における必要な電子 ビーム性能は、電子源において低エミッタンス(0.1 ~ 1.0 π mm・mrad)、大電流(10 ~ 100 mA)、高量子効 率(1 %あるいはそれ以上)、長寿命(数日間以上)、な どが挙げられる。ERL ではこれら性能を満たすビー ムを DC 的に発生させる必要があり、NEA GaAs 光 陰極を用いた高電圧 DC 電子銃開発がおこなわれて いる。^[1]

NEA とは Negative Electron Affinity、負の電子親和 性と呼ばれる表面状態である。通常の物質では真空 ポテンシャルは伝導帯の底よりも高くなっており、 電子親和性は正である。NEA では真空準位が伝導 帯の底よりも低い状態になり、バンドギャップ (GaAs の場合 1.42 eV:300K)程度の光で伝道帯に電子 を励起することで初期エミッタンスの小さい電子 ビームを得ることができる。

NEA 表面は極高真空中において清浄化した p 型 GaAs の表面にセシウム(Cs)と酸素(O₂)を蒸着するこ とで得られる。活性化直後は 10%程度ある量子効 率だが、時間の経過やビームの引き出しとともに減 少してしまい、寿命問題として認識されている。真 空中の活性ガスとの反応やビームにより発生した正 イオンの逆流により NEA が破壊されていくと考え られている。寿命の真空度依存性やビーム引き出し 量の依存性については研究されているが、量子効率 の低下と NEA 状態の変化についての研究はあまり なされていない。そこで、我々はこの量子効率と NEA 状態の関連を明らかとすることを目的として 研究をおこなった。本実験ではカソードに波長の異 なる光を照射して量子効率スペクトラムを計測し、 その時間変化を測定した。スペクトラムを再現する ような光電放出モデル、具体的には NEA 表面ポテ ンシャルの形状を検討し、そこから表面状態につい ての考察を行った。

実験装置の概略

実験装置は図1に示されているように、極高真空 を得るための真空チェンバーおよび必要な波長の光 をつくる光学系からなる。真空チャンバー内には光 電陰極となる Zn ドープの p 型 GaAs 基板がマウン トされ、放出電流を計測することで量子効率を測定 する。光電効果を生じるための励起光は、外部から ビューポートを通じて導入される。 本研究では住 友電工社製 GaAs 結晶をカソードとして用いた。結 晶には Zn が 5.0×10¹⁹ /cm³ ドープされており、不対 電子の内部への拡散によるバンドベンディングによ り、実効的な仕事関数を下げている。光学系は Xe ランプと分光器、光の輸送や整形のためのレンズ、 ミラー等からなる。本実験では650~1000 nm の範 囲で線幅 1.0nm で量子効率の測定を行った。光学系 には二次光を防ぐため、透過限界 520 nm のフィル ターを配置している。

^{*}E-mail: m106105@hiroshima-u.ac.jp

図1 真空チェンバー断面図。中央のロッド先端に GaAs 陰極を装着して、光電流を測定した。

3. 量子効率スペクトラムの測定

実験は GaAs 表面の清浄化、NEA 活性化、そし て寿命測定という手順で行った。NEA 活性化途中 および寿命測定途中で適宜量子効率のスペクトラム を測定した。最初に、表面清浄化のため、カソード マウント部に内蔵されているタングステンヒーター を用いて GaAs を 550 度で加熱洗浄した。その後に NEA 活性化をおこなった。活性化は光を照射し光 電流を測定しながら Cs と Oっを交互に蒸着して行っ た^[2]。各々の蒸着時の真空度は、Cs で 7.0×10⁻⁷ Pa 程 度、O₂で 1.0×10⁻⁷Pa であった。NEA 活性化時の量 子効率を He-Ne レーザーの波長に相当する 633nm の光で測定した結果を図2に示す。活性化時の量子 効率の波長変化を調べるため、図2中の①~⑤の量 子効率のピークにおいて量子効率スペクトラムを測 定した。図3に測定したスペクトラムを線形および 対数表示で示す。

図 3 量子効率スペクトラムを(a)線形表示したもの をおよび(b)対数表示したもの。赤、青、橙、桃色、 緑が図 2 における 1,2,3,4,5 での時点でのスペクトラ ムをあらわす。

図 3(a)を見ると、1.42 eV 近傍で量子効率の立ち 上がりが観測されているが、これは GaAs のバンド ギャップに相当するエネルギーである。図 3(b)を見 ると 1.42 eV 以下でも、光電効果が生じており、光 電流が有意に観測されている。これは Zn ドープに より発生した正孔準位に熱的に励起された電子によ る光電流であると思われる。活性化が進むにつれて 測定した全波長域の量子効率が上昇しているが、ス ペクトラム形状は指数関数的な形から、閾値を持つ 一次関数的な形へと変化していることが分かる。

活性化終了後、量子効率は時間とともに減少して いくので、そのスペクトラムの変化を測定した。 図4は633 nmの光に対する量子効率の時間変化を 表している。活性化終了後をt=0として、そこか ら1、2、85、197、231時間後の量子効率の波長依 存性の測定結果を図5に線形および対数表示で示す。

図 4 NEA 活性化後の量子効率の時間変化。波長を 633nm に固定して表示したもの。

図 5 量子効率スペクトラムの時間変化を(a)線形および(b)対数表示したもの。青、赤、橙、緑、桃色の線が t=1, 2, 85,197,そして 231 時間でのスペクトラムを示す。

こちらの結果をみると、量子効率スペクトラムが時間とともに大きさだけではなく、その形状も変化していることがわかる。またその変化の様子を時系列でみると、調度活性化時の変化の逆になっていることがわかる。すなわち劣化が進んだ状態でのスペクトラムは NEA 活性化の初期段階におけるそれと非常に似通っていることがわかる。

4. NEA 表面における電子放出モデル

量子効率スペクトラムの形状を説明するために、 NEA GaAs 光電陰極からの光電子放出のモデル化を 以下のように試みた。

量子効率の低下に寄与している効果を考察するため、表面のポテンシャル障壁の透過確率を計算した。 計算を簡単にするため NEA 表面のポテンシャルは 図 6 のように矩形の障壁を仮定し、そこでの透過確 率を計算した。

図6 NEA 状態の GaAs 表面のバンド構造概念図

ここで、 V_h はポテンシャル障壁の高さ[eV]、 V_n を 真空準位の深さ[eV]、a はポテンシャル障壁の厚さ [nm]である。伝導帯の最低準位を $E_z = 0$ としたとき の透過確率 T(E_z)は

$$T(E_z) = \frac{4 * (V_h - E_z) \sqrt{E_z (E_z - V_n)}}{V_h (V_h - V_n) \text{Sinh}^2 [\frac{\sqrt{2m(V_h - E_z)}}{\hbar} a] + (V_h - E_z) (\sqrt{E_z} + \sqrt{E_z - V_n})^2}$$

とあらわされる。 V_h , V_n , a はアプリオリには不明であり、実験的に決定されるべきパラメータである。 図 7,8,9 におのおの V_h , V_n ,a を変化させたときの透過確率の変化を示す。基本パラメータは { V_h , V_n , a} = {0.1、-0.1、0.4}とし、各々の図においてひとつのパラメータのみを変化させている。

図7 障壁厚さ a を変化させたときのトンネル確率。 青、緑、赤、黄が a=0.4,0.8,1.2,1.6 に相当する。

図 8 NEA の大きさ V_n を変化させたときのトンネル 確率。青、緑、赤、黄の線が V_n =-0.2,-0.1,0,0.1 に相 当する。

図 9 ポテンシャルの高さ V_h を変化させたときのトンネル確率。青、緑、赤、黄が V_h =0.1,0.2,0.4,0.8 に相当する。

これらの結果から、次の事が予想される。図 10 に示されているように、 V_n の変化は主に放出閾値を 変化はさせるが、量子効率スペクトラム全体の増減 にはあまり寄与しない。他方、図 9 および 11 から は、ポテンシャルの高さ V_h および NEA の大きさ V_n は量子効率全体の増減を生じることがわかる。ま たこれらは同様にスペクトラム形状の変化をも生じ る。具体的には障壁 a が薄い、あるいはポテンシャ ル V_h が低いときにはスペクトラム形状は上に凸と なり、逆の時には下に凸となる。

図3および図5に示されているように、測定結果の量子効率スペクトラムにおける電子放出の立ち上がりを閾値とみなすと、NEA活性化時および劣化時において,NEAの大きさVnは-0.2から0.0程度の間にあり、大きく変化していないことがわかる。こ

れからスペクトラム形状および量子効率の増減は NEA の大きさ V_nにより生じていないことが推測さ れる。量子効率全体の増減はポテンシャル高さ V_h およびポテンシャル厚さ a のどちらが変化しても生 じる。また上に凸から下に凸へのスペクトラム形状 の変化も生じるので、どちらのパラメータが変化し ているのかはデータとトンネル確率によるモデルの 比較だけから導くことは難しい。この両者の変化を データと対応させるためには、電子が伝導帯に励起 されてから表面に到達するまでの過程についての考 察を加え、スペクトラムを定量的に評価することが 必要となる。

5. まとめ

高品質電子ビーム源として有望な NEA GaAs 光陰 極の実用化において、最大の問題となっている寿命 問題への理解を深めるために、量子効率スペクトラ ムを NEA 活性化時および劣化時において測定した。 量子効率は NEA 活性化時および劣化時において、 全波長域において増減した。また、量子効率スペク トラムの形状は量子効率が大きい時は上に凸、小さ い時は下に凸と、なっていることがわかった。量子 効率スペクトラムの測定から推測する限りにおいて、 NEA 活性化と劣化は時系列的に逆の変化が生じて いることが示唆される。また、スペクトラム形状を 理解するために、NEA 表面を矩形波ポテンシャル でモデル化し、その障壁の透過確率をもとめた。そ の結果、スペクトラム形状の変化はポテンシャルの 高さあるいは厚さの増減により生じており、NEA の大きさはほとんど変化していないことが示唆され た。このことは実験で観測されたスペクトラムの立 ち上がり位置が大きくは変化していないことと整合 する。量子効率の増減やスペクトラム形状の変化か ら、ポテンシャル高さあるいはポテンシャル厚さの 変化を各々定量的に導くには定性的な比較だけでは なく、モデルの詳細化が必要である。伝導帯やバン ドベンディング領域での電子の振る舞いなどを理解 し、是非とも表面状態の定量的な理解を目指すべき と考える。

・参考文献

- T. Rao et al., "Photocathode for the energy recovery linacs", Nucl. Instr. and Meth. A 557 (2006) 124-130
- [2] K. Togawa et al., "Surface charge limit in NEA super lattice photocathodes of polarized electron source", Nucl. Instr. And Method A414 (1998) 431-445