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Abstract
Until today, scaling FFAG accelerator were only de-

signed in a ring shape. But a new criteria of the magnetic
field configuration satisfying the scaling condition even for
straight FFAG beam line is described here. Moreover, com-
bining different types of cells can be used to imagine new
lattices. Various applications using these recent develop-
ments are here examined: inprovements of the PRISM
project and the ERIT project, and a zero-chromatic carbon
gantry concept are presented.

INTRODUCTION
Recent developments in scaling FFAGs have opened new

ways for lattice design [1, 2]. Indeed, it is possible to guide
particles with no overall bend in scaling FFAGs, with an
exponential field law. Different types of cells can be com-
bined in the same lattice. It offers possibilities in terms
of shape for rings and transport lines, but also leads to the
creation of new functions, such as dispersion suppressors.
This concept can be applied to overcome problems like in
the PRISM project, or to improve existing schemes, like
the ERIT lattice. Finally, a scaling FFAG carbon gantry
concept is briefly described.

SCALING LAW
The scaling condition gathers two hypotheses:

• similarity of the closed orbits,

• similarity of the betatron oscillations, i.e. zero-
chromaticity of the system.

To deal with the betatron oscillations, we use the lin-
earized equations of motion around a closed orbit for a
given momentum:

d2x

ds2
+

1 − n

ρ2
x = 0

d2z

ds2
+

n

ρ2
z = 0

, (1)

with ρ the curvature radius, s the curvilinear abscissa, x
and z the perpendicular displacement off the closed orbit
respectively in horizontal and in vertical and n the field
index defined as

n = − ρ

B
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. (2)
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To satisfy the scaling condition, Eq. (1) has then to be in-
dependent of momentum.

In circular elements, we start from a set of closed orbits
for each momentum lying in the median plane. In this case,
similarity of the closed orbits means that each of them is a
photographic enlargement of each other. The general form
of the vertical component of the magnetic field B in the
mid-plane is[3, 4]

B = B0

(
r

r0

)k

F(θ), (3)

with r and θ the polar coordinates, B0 the magnetic field
at the radius r0, F an arbitrary periodic function, and k the
geometrical field index.

While in circular elements, the concept of closed orbit is
obvious, the corresponding notion of reference trajectory
in straight elements has first to be defined. A reference
trajectory of a straight cell is a trajectory followed by a
particle whose coordinates (i.e. angle and position) are the
same at the entrance and at the exit of the cell.

In the same way than in circular elements, we start from
a set of reference trajectories for each momentum lying in
the median plane. In this case, similarity of the reference
trajectories means that each of them is a translation of each
other. Each reference trajectory is specified by its average
abscissa X over one cell.

The betatron oscillations are invariant in momentum if
Eq. (1) is the same for every momentum, and since s is
independent of momentum, the condition to have invariant
betatron oscillations is

∂

∂p

(
1
ρ2

)
= 0

∂
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(
n

ρ2

)
= 0

. (4)

The similarity condition of the reference trajectories vali-
dates the first equation of the system (4), since it gives that
the curvature radius depends only on s, so is independent
of momentum. We now focus on the second equation of
the system (4).

If we differentiate the equation p = qBρ, for a particle
of momentum p and charge q, with respect to x, we have:

B
∂ρ

∂x
+ ρ

∂B

∂x
=

1
q

dp

dx
(5)

If we introduce the field index n in Eq. (5), we have:

n =
∂ρ

∂x
− ρ

p

dp

dx
. (6)
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To express Eq. (6) in the coordinates (X, s), we now in-
troduce the parameters η and ϵ that link dx with ds:

η = dx/dX, (7)
ϵ = ds/dX. (8)

Then, rewriting Eq. (6) with η and ϵ, we get

n = −1
η

(
mρ + ϵ

dρ

ds

)
, (9)

with m a parameter given by

m =
1
p

dp

dX
. (10)

Rewriting m with the magnetic field B, we get:

m =
1
B

dB

dX
. (11)

In consequence, we have

n

ρ2
= − 1

ηρ

(
m +

ϵ

ρ

dρ

ds

)
. (12)

The similarity gives that ρ, η and ϵ depend only on s, there-
fore they are independent of momentum. So, starting from
the similarity of the reference orbits, The betatron oscil-
lations are independent of momentum if and only if m is
independent of momentum. In this case, we can integrate
Eq. (11) and with the initial condition B(X0) = B0, we
obtain the scaling law:

B = B0e
m(X−X0 )F(s), (13)

where F is an arbitrary periodic function.
As a remark, in the linear approximation, the field index

n can be written in the circular section as

n =
ρ

r0
k, (14)

and in the straight section as

n = mρ. (15)

INSERTIONS AND DISPERSION
SUPPRESSOR PRINCIPLE

Matching of reference trajectories
FFAG straight sections could be used with circular FFAG

sections, but since field laws in each section are different,
it will occur a discontinuity of reference trajectories at the
border of these two sections. Before combining them to-
gether, it is useful to consider them separately. In scaling
FFAG, the periodic dispersion function D of a cell for a
given momentum p0 is defined as

Dcirc.(p0) = p0

(
∂r

∂p

)
p0

=
r

k + 1
(16)

in circular elements, with r the radius of the closed orbit,
and k the geometrical field index of the cell, and

Dstr.(p0) = p0

(
∂a

∂p

)
p0

=
1
m

(17)

in straight elements, with a the abscissa of the reference
trajectory and m the factor in the exponential law we dis-
cussed in Sec. .

In consequence, to combine a straight section and a cir-
cular section, after matching a special momentum p0, dis-
persion can be matched with

m =
k + 1
R0

, (18)

with R0 the radius of the closed orbit for the momentum
p0 at the border of the cell in the circular section. But this
matching is done only to the first order in R−R0

R0
, with R

the radius of the closed orbit for a momentum p at the bor-
der of the cell in the circular section. Higher orders effects
create a reference trajectory mismatch for momenta other
than p0[1]. By a proper choice of p0, the mismatch could
be minimized for the considered momentum range. An ex-
ample has been computed by simulating the insertion of
straight sections in the 150 MeV FFAG ring of KURRI,
for kinetic energies between 20 MeV and 150 MeV. The
mismatch x as a function of kinetic energy is presented in
Fig. 1. This maximum mismatch is around one cm for this
case. It would be smaller for larger rings.
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Figure 1: Mismatch of reference trajectories between circu-
lar cells and straight cells in 150 MeV FFAG ring example.

In the same way, it is possible to match two circular
FFAG sections with different radii r1 and r2. The disper-
sion matching condition is kept by adjusting the geometri-
cal field index:

k1 + 1
r1

=
k2 + 1

r2
. (19)

Matching of linear parameters
Once the reference trajectories are matched, the peri-

odic beta-functions of the cells have also to be matched to
limit the amplitude of the betatron oscillations. If a correct
matching is not achievable, then an insertion with a phase
advance multiple of 180 deg can be done for one of the

Proceedings of the 7th Annual Meeting of Particle Accelerator Society of Japan (August 4-6, 2010, Himeji, Japan)

-236-



two different types of cells. This insertion becomes thus
transparent, limiting the betatron oscillations.

Dispersion Suppressor

In FFAGs, dispersion suppressors can be useful at the
end of a transport line, or to reduce excursion where rf cav-
ities are set in FFAG rings. The effect of a dispersion sup-
pressor would be to decrease the excursion, i.e. to bring
closer the reference trajectories around a matched one. This
excursion reduction can even be a complete suppression
(see Fig. 2).

A principle of a dispersion suppressor in scaling FFAGs
is presented in Fig. 2. The components of this scheme are
three types of scaling FFAG cells, straight or circular. The
area 1 contains FFAG cells with a dispersion D1 at the bor-
der, the area 2, constituting the dispersion suppressor itself,
contains FFAG cells with a dispersion D2 at the borders,
and the area 3 contains FFAG cells with a dispersion D3 at
the border. The conditions to have a dispersion suppressor
are a phase advance of 180 deg. for the cells of the area 2
and the dispersion D2 has to verify

D2 =
D1 + D3

2
. (20)

This principle is based on the linear theory, so is valid as
long as the effect of non-linearities is negligible.

Figure 2: Principle of a dispersion suppressor with scaling
FFAG cells. The upper scheme shows the case of a com-
plete suppression of the dispersion, the lower one the case
of a remaining dispersion after the dispersion suppressor.

PRISM CASE
The PRISM (Phase Rotated Intense Slow Muon beam)

project aims to realize a low-energy muon beam with a
high-intensity, narrow energy spread and high purity. For
this purpose, a scaling FFAG ring has been proposed [5].
Requirements for the FFAG ring include a large trans-
verse and longitudinal acceptance. The original design of
the FFAG ring for PRISM is based on 10 identical DFD
triplets. If this design fulfills the requirements of accep-
tance, the excursion is very large and the injection and ex-
traction still remains difficult. To solve this problem, we

consider the use of straight cells in the lattice and a new de-
sign is proposed (see Fig. 3). Parameters are summarized
in table 1.
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Figure 3: Closed orbits of 55 MeV/c, 68 MeV/c and
82 MeV/c muons µ− in the PRISM lattice with straight
sections.

Table 1: Parameters of the new PRISM lattice.
Circular Straight
Section Section

Type FDF FDF
k-value or m-value 2.55 1.3 m−1

Radius/Length 2.7 m 1.8 m
Horizontal phase advance 60 deg. 27 deg.
Vertical phase advance 90 deg. 97 deg.
Number of cells 2 3

Particle tracking is done with Runge-Kutta integration
in soft edge fields with linear fringe field falloffs. Compo-
nents of the field off the mid-plane are obtained from a first
order Taylor expansion, satisfying the Maxwell equations.

The original PRISM design has a very large dispersion
function (∼ 1.2 m) that makes difficult the injection and
the extraction. The new proposal starts then from a smaller
one (∼ 0.8 m). After minimizing the mismatch of the beta-
functions, the bending part of the ring is made transpar-
ent to limit the effect of the remaining mismatch on the
amplitude of the betatron oscillations. The resulting beta-
functions for a momentum of 68 MeV/c are presented in
Fig. 4. The working point is chosen in the tune diagram
so that it is far from the structural normal resonances. The
present working point has a tune of 2.9 in horizontal and
6.3 in vertical.
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Figure 4: Horizontal (plain red) and vertical (dotted purple)
beta-functions for half of the ring of the PRISM lattice.
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The transverse acceptance in both planes is studied by
tracking over 30 turns a particle with a displacement off
the closed orbit and a small deviation in the other trans-
verse direction (1 mm). Collimators (± 1 m in horizontal,
± 30 cm in vertical) are used to identify the lost particles.
The regions drawn by the particle with the largest initial
stable amplitude in the horizontal and vertical phase spaces
are respectively presented in Fig. 5 and 6. Horizontal
(∼ 24000 π.mm.mrad) and vertical (∼ 6000 π.mm.mrad)
acceptances are then measured by the area of the biggest
ellipse included in this region.
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Figure 5: Horizontal phase space. Two particles with an
initial displacement of 15 cm and 29 cm are tracked in the
PRISM lattice over 30 turns. The dotted ellipse is the one
used to measure the acceptance in the middle of the straight
section.
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Figure 6: Vertical phase space. Two particles with an initial
displacement of 3.5 cm and 7 cm are tracked in the PRISM
lattice over 30 turns. The dotted ellipse is the one used to
measure the acceptance in the middle of the straight sec-
tion.

ERIT CASE

The ERIT (Energy/Emittance Recovery Internal Target)
project with a scaling type of FFAG proton storage ring
has been proposed as an accelerator-based intense thermal
or epithermal neutron source (ABNS) for boron neutron
capture therapy and constructed in KURRI [6]. Emittance
blow up due to multiple scattering and energy straggling in
the target is limited by ionization cooling. The results are
promising [7], but since limitation of the survival rate of
the protons comes from the emittance growth in the vertical
plane, an insertion with a minimum of vertical betafunction
could improve this scheme.

The purpose of the insertion is to decrease the value
of the vertical betafunction at the target. In the existing
scheme, the vertical betafunction is 0.8 m. The length of
the insertion is settled from the RF frequency of the ex-
isting cavity (18.2 MHz). To minimize the effect of the
mismatch on the amplitude of the betatron oscillations, the
arc is modified by changing the k-value (from 1.92 to 2.57)
to become transparent. This change in the design will have
a small effect on dispersion (from 0.8 m to 0.65 m). The
parameters of the new lattice are presented in table 2.

Table 2: Parameters of the new ERIT lattice.
Circular Straight
Section Section

Type FDF DFFD
k-value or m-value 2.57 1.52 m−1

Radius/Length 2.35 m 1.4 m
Horizontal phase advance 90 deg. 41 deg.
Vertical phase advance 90 deg. 148 deg.
Number of cells 8 2

Particle tracking is done again with Runge-Kutta integra-
tion in the same conditions than in the PRISM case. The
tune is 2.22 in horizontal and 2.82 in vertical.
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Figure 7: Closed orbit of 11 MeV proton in the ERIT lattice
with the insertion.

Betafunctions are obtained with a small amplitude mo-
tion (see Fig. 8): at the target, the horizontal betafunction
is 3.2 m and the vertical one 0.29 m. The vertical beta-
function is thus smaller by a factor 3 at the target, but the
horizontal one is bigger by a factor 2.5 compared with the
original lattice. Further study must be realized to check
if the horizontal acceptance (more than 10000π mm.mrad,
see Fig. 9) is enough to handle the overheating due to the
increase of the betafunction.

TRANSPORT LINE AND CARBON
GANTRY

FFAG transport line could be useful to transport differ-
ent momenta in a short time in the same line, like in hadron
therapy gantries. In zero-chromatic FFAGs, each momen-
tum has a different reference trajectory. Dispersion sup-
pressors are then necessary at the beginning and at the end
of the gantry since all different momenta come from and ar-
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Figure 8: Horizontal (plain red) and vertical (dotted purple)
beta-functions for half of the ring of the ERIT lattice.
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Figure 9: Horizontal phase space. An 11 MeV proton with
an initial displacement of 13 cm is tracked in the ERIT lat-
tice over 1000 turns.

rive at the same point. Another constraint comes from the
reverse bend in the line. It induces to reverse the dispersion
between the two bends, or to use a negative-k lattice in one
of the bends. A schematic layout is presented in Fig. 10.

Figure 10: Schematic layout of a zero-chromatic FFAG
gantry. The dotted red line represents the trajectory of a
middle momentum, and the plain red line the maximum
momentum. The mixed lines represents the rotation axis.
The upper scheme shows the case of a reverse dispersion,
the lower one the case of a negative-k lattice (in yellow).

SUMMARY

To overcome the problem of injection/extraction in the
PRISM project, a new lattice using straight sections is pro-
posed. An improvement of the ERIT scheme is then pre-
sented with a low-betafunction insertion in the ring. Finally
the concept of a zero-chromatic FFAG carbon gantry is de-
scribed. if these proposals need further studies, they open
a promising way to improve lattices and schemes.
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