## **OPTICS MEASUREMENT AND CORRECTION IN J-PARC MR**

Susumu Igarashi <sup>#,A)</sup>, Hiroyuki Harada<sup>B)</sup>, Shuichiro Hatakeyama<sup>B)</sup>, Tadashi Koseki<sup>A)</sup>, Masashi Shirakata<sup>A)</sup>, Junpei Takano<sup>A)</sup>, Fumihiko Tamura<sup>B)</sup>, Takeshi Toyama<sup>A)</sup>

<sup>A)</sup> High Energy Accelerator Research Organization

1-1 Oho, Tsukuba, Ibaraki, 305-0801

<sup>B)</sup> Japan Atomic Energy Agency

2-4 Shirakatashirame, Tokai, Naka, Ibaraki, 319-1195

#### Abstract

Optics parameters have been measured and corrected for the main ring (MR) of the Japan Proton Accelerator Research Complex (J-PARC). The betatron oscillations with intentional injection errors have been measured at all available beam position monitors for the betatron amplitude function ( $\beta$ ). The closed orbit distortions have been measured for certain momentum shifts for the dispersion function ( $\eta$ ). The measured optics have modulation of about 12% in root mean square (rms) and the modulation has a three-fold symmetry. Correction factors for the magnetic field settings of the 11 families of the quadrupole magnets were fitted to reproduce the designed  $\beta$ ,  $\eta$  and betatron tune. The rms of  $\beta$  modulation was reduced to be within 5% with the correction. We observed improvement in the beam loss localization.

# J-PARC MRにおける光学測定とその補正

## 1. はじめに

大強度陽子加速器施設(J-PARC)の主リング(MR)は 大強度の陽子を 3 GeV で入射し、30 GeV まで加速 して取り出す加速器で、2011 年 3 月にはパルスあた り 9.2×10<sup>13</sup> 個の陽子、ビームパワーとして 145 kW のビームをユーザーに供給した。機器の放射化を最 小限にするため、ビームロスの低減とコリメータへ の局在化が重要となっている。ビームロスは主に 3 GeV のときに発生し、平均的なロス粒子数は 2 % 弱で、ロスパワーは 250 W であった。ビームロスを コリメータに局在させるため、コリメータ部を含む MR 全体のベータートロン振幅関数( $\beta$ )とディス パージョン関数( $\eta$ )が正しく設定されていることが 必要となる。

今まではステアリング電磁石を使って $\beta$ の測定を 行っていた<sup>III</sup>。ステアリング電磁石により 0.2 mrad のキック量を与えたときの閉軌道(COD)を測定し、 ステアリング電磁石とほぼ同じ位置にあるビーム位 置モニター(BPM)での $\beta$ を算出した。また、rf 周波 数を変えることにより運動量を変え、そのときの CODを測定することにより、 $\eta$ の測定を行った<sup>[2]</sup>。

今回、入射エラーを意図的に作った場合のベー タートロン振動振幅をターンごとに測定することに より、全ての BPM でのβを測定した。ステアリン グ電磁石を使う方法と比較して、個々のステアリン グ電磁石のキック量のばらつきが測定エラーとなる ことを排除できることが利点となる。

今回の測定により、βの変調が 20%以上ある場所 があり、その変調が3回対称となっていることが分 かった。変調の主な要因は11ファミリーの四極電 磁石の設定のずれであると考えられ、その補正を 行った。これらの光学測定とその補正、およびそれ によるビームロスの変化について報告する。

## 2. β測定

β測定のためにビーム強度を 5×10<sup>11</sup> ppb とし、1 バンチ入射した。BPM の測定モードのひとつでター ンごとの位置を測定し<sup>13</sup>、入射直後から 200 ターン までの測定を全ての BPM を使って行った。図1に BPM001 での水平方向ビーム位置の測定結果を示す。 入射セプタム電磁石の電流設定を入射エラーがない 状態から4 A 変え、入射エラーを作り、6 mm 程度 のベータートロン振動が観測できる。MR では六極 電磁石によりクロマティシティの補正を行っている。 六極電磁石による非線形のためか、若干、振幅がダ ンプしている。最初の 40 ターンまでの測定点を sin 関数でフィットし振幅を求めた。





BPM 処理回路は動作不安定となる場合があり、 186 台のうち今回は 3 台の測定ができなかった。測 定できた全ての BPM について同じ解析を行った。

<sup>#</sup> susumu.igarashi@kek.jp

振幅は $\beta$ の平方根に比例する量であり、設定の $\beta$ の 平均値が、測定の $\beta$ の平均値となるようにスケール 値を求めた。図2に水平方向 $\beta$ の測定値および設定 値を示す。



図2:水平方向ベータートロン振幅関数。光学補正 前(○)、光学補正後(●)、設定値(青線)。

垂直方向の $\beta$ の測定は、RCS から MR へのビーム 輸送ライン(3-50BT)最下流の垂直方向ステアリング 電磁石の設定を 25 A 変えることにより、入射エ ラーをつくり、入射から 200 ターンのターンごとの 垂直方向のビーム位置を BPM で測定することによ り行った。結果を図3に示す。

Beta Function Measurement with Injection Error  $sqrt(\beta_{v})~(m^{1/2})$ 



図3:垂直方向ベータートロン振幅関数。光学補正 前(○)、光学補正後(●)、設定値(赤線)。

設定値との比較のために測定値と設定値の比を図 4と5に示す。 Beta Function Measurement with Injection Error  $\beta_{*}$  meas/calc



図4:水平方向ベータートロン振幅関数、設定との 比。光学補正前(○)、光学補正後(●)。



図5:垂直方向ベータートロン振幅関数、設定との 比。光学補正前(○)、光学補正後(●)。

垂直方向βは概ね 10%以内で設定と合っている。 水平方向βは 20%を超えて合っていないものがある。 特にコリメータ部で 20%近く変調しているものがあ ること、直線部でβが最大となる場所で 20%近く大 きくなっていることで、ビームロスへの影響が懸念 される。これらの変調には3回対称性が見られる。 つまりβ変調の主な要因は、個々の四極電磁石のず れではなく、四極電磁石のファミリーごとのずれで あることが推測される。

## 3. η 測定

 $\eta$ の測定のために、ビーム強度はバンチあたり 2 ×10<sup>12</sup> とし 2 バンチ入射した。入射後 50 ms から 100 ms のあいだに rf 周波数を変え、運動量の変化 ( $\Delta p/p$ )を作った。 $\Delta p/p$  の設定としては 0, ±0.3, ± 0.5 %の 5 種類について、COD の測定を行った。5 点のデータについてリニアフィットを行い、 $\eta$ を計 算した(図 6 )。



図6: MR 一周でのη測定値。

#### 4. 光学補正

11 ファミリーの四極電磁石の設定のずれを仮定し て、β測定、η測定およびチューン測定の全ての測 定値を再現するような四極電磁石の k 値を光学計算 モデル内で再構築し、設定値との比から補正係数を 求めた(図7)。アーク部のファミリーの補正係数は 小さく、最大でも QFX ファミリーの -0.3 %であり、 ηのずれは小さい。補正係数の最大値は QFP ファミ リーの 2.2 %であった。四極電磁石の磁場の絶対値 のずれを示すものかもしれない。



図7:光学測定をもとに四極電磁石 k 値をパラメー タとして再構築した光学パラメータ(点線)、設計光 学パラメータ(実線)、水平方向測定値(●)、垂直方向 測定値(●)。

この補正後のβの測定結果を図2~5に示す。主 に水平方向βに改善が見られる。水平方向β変調の root mean square (rms)は、補正前の 12.0 %から補正 後に 4.5 %と改善した。垂直方向 $\beta$ については元々 あまりずれがなかったため、 $\beta$ 変調の rms は補正前 の 4.3 %から補正後の 4.7 %とほぼ変化なかった。

また、この補正により、直線部のβの最大となる 場所で 20%近く大きかったものが補正された。βの 最大となる場所のひとつ QFP004 では、補正前には、 大きなビームロスが観測されていたが、この補正後 にはビームロスが低減した(図8)。このビームロス の観測には、別の日の補正パラメータが使われてい る。



図8:光学補正前(上)と補正後(下)のビームロス分布 (MRの1/3周、入射直線部とアークA)。#4の位置 でのロスの低減が見られる。

#### 5. まとめ

J-PARC MR において $\beta$ および $\eta$ の測定を行った。 入射エラーを故意に作り、ベータートロン振動振幅 を BPM で測定することにより、 $\beta$ を求めた。 $\eta$ の 測定は rf 周波数を変えたときの COD の変化を測定 することにより行った。設計光学パラメータと比べ 測定された水平方向の $\beta$ 変調は rms で 12.0%あり、 その変調には 3 回対称性が見られた。11 ファミリー の四極電磁石の設定のずれを仮定して、k 値の補正 により、光学補正を行った。補正後、水平方向の $\beta$ 変調は rms で 4.5%と改善した。また、ビームロスの コリメータへの局在化についても改善した。

#### 参考文献

- J. Takano, et al., "ステアリング電磁石を用いた J-PARC MR のβ関数測定", Proceedings of the 6th Particle Accelerator Society Meeting, Naka, Ibaraki, Aug. 5-7, 2009
- [2] J. Takano, et al., "J-PARC MR の Dispersion 測定", Proceedings of the 6th Particle Accelerator Society Meeting, Naka, Ibaraki, Aug. 5-7, 2009
- [3] S. Hatakeyama, et al., "J-PARC MR 横方向の入射エラー及びベータトロンチューンモニターシステム", Proceedings of the 7th Particle Accelerator Society Meeting, Himeji, Hyogo, Aug. 4-6, 2010