COHERENT HARMONIC GENERATION USING RELATIVISTIC ELECTRON BEAM AND HIGHER HARMONICS OF A LASER

Naoki Wasa^{A,B)}, Takanori Tanikawa^{B,*)}, Youhei Uematsu^{A)}, Masahito Hosaka^{C)}, Naoto Yamamoto^{C)}, Yoshifumi

Takashima ^{A,C)}, Masahiro Adachi ^{B,D)}, Heishun Zen ^{B,#)}, Masahiro Katoh ^{B,C,D)}

^{A)} Nagoya University, Furo-cho. Chikusa-ku, Nagoya, 464-8603 Japan

^{B)} UVSOR facility, Institute for Molecular Science, Myodaiji-cho, Okazaki, 444-8585 Japan

^{C)} Nagoya University Synchrotron radiation Research center, Furo-cho.Chikusa-ku, Nagoya, 464-8603 Japan

^{D)} The Graduate University for advanced Studies, Hayama-cho.Miura-gun, 240-0193 Japan

Abstract

At the UVSOR-II storage ring, a new optical klystron type undulator(s) will be soon installed. We have theoretically examined coherent harmonic generation (CHG) using the optical klystron. We estimated form factors of electron bunch induced in the CHG scheme driven by three kinds of possible incident lasers, namely a Ti:Sa laser, low harmonics of the laser using a non-linear crystal and high harmonics of the laser using a noble gas. As the result, we found the form factor at vacuum ultra-violet region is sufficiently high for measuring CHG when the harmonics of the laser is used for driving CHG. We also made a preliminary experiment on the production of higher harmonics using a noble gas and observed the third harmonics of a Ti:Sa laser. A three pole electromagnetic magnet used as buncher of the new optical klystron is designed. Construction of the magnet will start soon.

相対論的電子ビームとレーザーの高調波を用いたコヒーレント高調波発生

1. はじめに

分子科学研究所 UVSOR-II では、相対論的電子 ビームと高強度パルスレーザーをアンジュレータ中 で相互作用させることにより得られる、コヒーレン ト光源の開発を行っている。現在、新しいオプティ カルクライストン型アンジュレータを建設中でこの 秋に完成予定である。本研究ではこの新しいオプ ティカルクライストロンを用いて高強度パルスレー ザーを電子ビームと相互作用させることで発生する 短波長高次高調波発生について検討した。特にレー ザーの基本波だけではなく、その高調波を用いるこ とで短波長化することについて調査を行った。電子 ビームと相互作用させるレーザーの高調波に関する 検討と、最終的に発生するコヒーレント高調波の発 生効率の指標となる form factor の計算と検討結果を 報告する。

2. コヒーレント高調波の発生原理

図1:電子ビームとレーザーの相互作用

電子ビームとレーザーをオプティカルクライスト ロンとよばれるアンジュレータ中で相互作用させる ことでコヒーレント高調波を得ることができる (図 1)。

オプティカルクライストロンは Modulator、 Buncher、Radiator によって構成されている。 Modulator において電子ビームとレーザーの電場と でエネルギーの授受が起こり、結果として電子ビー ムはエネルギー変調を受ける。次に Buncher ではエ ネルギーの高い電子は短い弧を、エネルギーの低い 電子は長い弧を描くためエネルギー変調が密度変調 となり電子ビームがマイクロバンチ化される。最後 に Radiator ではマイクロバンチ化した電子からその マイクロバンチの周波数およびその高調波のコヒー レント放射光が発生する[1]。

レーザーの高調波を発生させる手法として非線形 結晶を用いた方法と希ガスを用いた方法(4.1 参照)の 2 種類で検討を進めている。

3. 入射光源の最適化

3.1 CHG \mathcal{O} form factor

波数kのレーザーを入射したときに、発生するその n次の CHG スペクトル強度は式 (1)で表わされる。

$$P(nk)_{CHG} = N f(nk) P(nk)_{SR}$$
(1)

ここでNはレーザーと相互作用した電子数、P(nk)_{SR} は波数 nkの Radiator からの放射光スペクトル強度

^{*)} University of Lille 1, Villeneuve d'Ascq, Lille, France

^{#)} Kyoto University, Gokasyou, Uji, 611-0011 Japan

である。このように CHG 強度の指標になる form factor f(nk)は式(2)で与えられる。

$$f(nk) = Exp\left[-\left(nkR_{56}\frac{\Delta\sigma_{\gamma}}{\gamma}\right)^{2}\right]J_{n}\left(nkR_{56}\frac{\Delta\gamma}{\gamma}\right) \quad (2)$$

R₅₆は式(3)で与えられるように、エネルギーの異なる電子の軌道長差を表わす。

$$\Delta l = R_{56} \frac{\Delta p}{p} \tag{3}$$

 $J_n は n次のベッセル関数、<math>\Delta \sigma_{\gamma} / \gamma$ は電子ビームのエ ネルギー広がりを表す。 $\Delta \gamma / \gamma$ はレーザーによって与 えられたエネルギー変調を表わし、入射レーザーパ ワーの二乗根に比例する。

式(2)の指数の項は電子ビームのエネルギー広がり による減衰項であり、ベッセル関数の項は電子ビー ムのバンチングの第 n次高調波を表わす。

3.2 UVSOR-II 新 S1 オプティカルクライストロン の CHG form factor の導出

UVSOR-II 新 S1 オプティカルクライストロンに おける CHG のスペクトル強度を評価するために form factor を計算した。計算に使った固定パラメー タは表1に示す。表に示すように、UVSOR-II の新 S1 オプティカルクライストロンは2つの周期長 88 mm 周期数 10 の Apple-II タイプのアンジュレータ (Modulator と Radiator) 2 台と3極の電磁石による Buncher から構成されている。

電子ビーム		
エネルギー広がり	エネルキ゛ーシフト	ヒ゛ームエネルキ゛ー
0.00034	0.25	600 MeV
挿入光源		
レイリー長	パルス幅(FWHM)	ハ゜ルスエネルキ゛ー
0.5 m	100 fsec	0.5 μJ~50 mJ
Modulator・Radiator(UVSOR-II 新 S1 アンジュレータ)		
Apple-Ⅱ型アンジュレータ		
全長	周期長	周期数(N)
1.056 m	0.088 m	10

表1:想定パラメータ

入射レーザーは理想的なガウシアンビームとした。 レイリー長は Modulator で電子との相互作用が最大 値である 0.5 m とし、Modulator の中心で集光するこ ととする。このとき例えば波長 800 nm の入射レー ザーを用いるとレーザーウエストは 350 μ m になる。 Modulator においてレーザーと電子ビームによって 与えられるエネルギー変調 $\Delta\gamma/\gamma$ を求め、それを式 (2)に代入することで form factor は求められる。

図2: form factor のR56依存性

図 2 にパルスエネルギーが 10 mJ、1 mJ、100 μ J のレーザーを入射したそれぞれの場合の form factor の Buncher 部及び Radiator 部の R_{56} に対する依存性を 示す。 レーザーパワーの上昇につれ、form factor が 最大となる R_{56} の値が減少する。一方、 R_{56} は Modulator の周期数及び周期長で決まる下限値を持 つ。レーザーパワーを上昇させていくと form factor を最大にする R_{56} がこの下限値より小さくなる。し たがって form factor の最大値は減少する(図 3)。こ れにより form factor を最大とするパルスエネルギー が決まる。

図 3: form factor のパルスエネルギー依存性

レーザーをそのまま利用した場合と、非線形結晶 からの高次高調波を利用した場合、及び希ガスを用 いた高調波発生を利用した場合の出力次数に対する form factor の最大値を図 4 に示す。希ガスからの高 調波発生を用いる場合はパルスエネルギーが 5 μ J の 場合について form factor を計算しており、レーザー 直入射と非線形結晶からの高調波を利用したものは form factor が最大となるパルスエネルギー(200~500 μ J)及び R₅₆ で計算している。

図 4 より希ガスからの高調波発生は基本波の次数の 場合以外は form factor の低下が激しいが、基本波の 次数に関しては非常に高い値を示しており、円偏光 コヒーレント放射光等の発生に適していると考えら れる。

図 4: 出力次数に対する form factor の最大値

非線形結晶を用いた高調波発振[2][3]を利用した場 合は広い範囲で高い値を示している。このグラフよ り VUV 領域まで発生が可能と予測される

希ガスを用いた高調波発生 4.

4.1 希ガスを用いた高調波発生システム

図5:希ガスを用いた高調波発生

希ガスに高強度なパルスレーザーによる電場を相 互作用させることにより、希ガス原子の電子がトン ネル電離を起こし、再結合する際に高次高調波を放 出する(図 5)。希ガスは全方向に対し均等である(等 方性)の性質の為偶数時の高調波発生は起こらない為、 奇数次のみの発生となる。[4][5][6]

図6:希ガスを用いた3次高調波発生システム

この原理を用いて3次高調波発生システムを構築 した。アルゴンを真空チャンバー内の 12 cm のガス セルに流入し、ガスセルに開けた直径 1.5mm のピン ホールから集光させたレーザーを入射し発生させる。

4.2 3次高調波の測定

800 nm の 3 次高調波(266 nm)は大気中を通るため 立ち上げた高調波発生システムの測定として 3 次高 調波の測定を行った。2枚の266 nm 用多層膜ミラー とバンドパスフィルターを通すことにより、3次高 調波のみを選択的に測定した。入射したレーザーは パルスエネルギー12.5mJ~54mJ で 3m ほど集光させ、 検出器として Coherent 社のエネルギーセンサー(J-10MB-LE) を用いた。

図7:3次高調波のガス圧依存性

入射パルスエネルギーとガスセル内の圧力を変化 させた場合の発生した 3 次高調波のパルスエネル ギーを図7に示す。最大で2μJの出力を確認するこ とができた。

バンチャー電磁石の設計 5.

UVSOR-IIの新 S1 のオプティカルクライストロ ンに用いるバンチャー電磁石の磁場を、3次元磁場 計算コード Radia を用いて計算した。FEL 利用も考 慮に入れ最大 R₅₆を 72 μm とし、磁場積分が 0、コ イル中での電流密度が 2A/mm² 以下になるようにし た。設計したバンチャー電磁石は電流密度が $2A/mm^2$ で R₅₆が 73 µm となった(図 8)。

図 8: Radia による磁場計算

6. まとめ

相対論的電子ビームとレーザーの高次高調波を用 いた短波長コヒーレント高調波の発生を目指し研究 を進めている。

発生するスペクトル強度の指標の一つである form factor の計算を行い、入射光源であるレーザーの高 調波に関する検討を行った。希ガスを用いた高調波 発生を利用する場合は入射次数より高次の次数の発 生は見込めないが、そのままの次数では非常に高い 値を示している。したがって、円偏光コヒーレント 放射光等の発生に適していると考えられる。非線形 結晶を用いた高調波を利用する場合は全体的に高い 値を示しており、有効であることが分かった。

希ガスを用いた高調波発生システムの構築を行った。また、大気中で測定可能な3次高調波の測定をした結果最大で2µJの出力が確認された。

今後は、計算で求めた結果をもとにバンチャー電 磁石の制作を進め、非線形結晶を用いた CHG の実 験を行う予定である。

参考文献

- C. Spezzani et al. / Nuclear Instruments and Methods in Physics Research A 596 (2008) 451–458
- [2] http://www.kogakugiken.co.jp/products/crystal.html
- [3] http://www.hi-ho.ne.jp/dhow/new_page_2.htm
- [4] J.-F. Hergott et al "Extreme-ultraviolet high-order harmonic pulses in the microjoule range" PHYSICAL REVIEW A, 66, 021801(R) (2002)
- [5] M.Lewenstein et al "Theory of high-harmonic generation by low-frequency laser field"
 PHYSICAL REVIEW A, 49, 3 (1994)
- [6] W.Becker "Modeling harmonic generation by a zero-range potential" PHYSICLA REVIEW A, 50, 2 (1994)