Investigation of efficient production method of ¹¹CH₄ gases for ¹¹C ion production

^AKen Katagiri, ^AKoutaro Nagatsu, ^AKatsuyuki Minegishi, ^ASatoru Hojo, ^AMasayuki Muramatsu, ^AKazutoshi Suzuki,

^BToshihiro Honma, ^AAkira Goto

^A National Institute of Radiological Sciences

4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan

^B Accelerator Engineering Corporation, Ltd.

3-8-5 Konakadai, Inage, Chiba 263-0043, Japan

Abstract

A new production method of ¹¹CH₄ gases has been investigated for the production of ¹¹C-ions, which is necessary for the PET-imaging simultaneously with the heavy-ion cancer therapy. In order to decide the target materials and to design the new production system of ¹¹C gas, preliminary experiments were carried out. Using 180-MeV proton beams delivered from the NIRS-930 cyclotron, solid-state targets were irradiated to produce ¹¹C molecules. We confirmed that 5×10^{12} of ¹¹CH₄ molecules could be produced and collected by using a Boron hydride compound as the target.

¹¹Cイオン生成のための¹¹CH₄ガス高効率生成法の検討

1. はじめに

HIMAC シンクロトロンを用いた重粒子線治療 は、これまでに 6000 人を超える患者に適用され てきた. 重粒子線の照射精度向上を目的として, 2011 年からはラスタースキャニング法による次世 代照射技術の適用も開始された. さらなる照射精 度向上を狙って,この次世代照射法に Image-Guided Radiation Therapy (IGRT) を適用すること が望まれている.この重粒子線治療における IGRT 法では、これまでに使用してきた¹²C に代 わり陽電子放出核である "C イオンを照射ビーム とし、オンライン PET を用いて粒子線照射野をリ アルタイムでモニタリングしながら照射すること で照射精度の向上を図る.この陽電子放出核の照 射法としては、高エネルギー¹²C ビームから入射 核破砕反応によって得られる ¹¹C イオンを 2 次 ビームとして生成し、患者に照射する方法がこれ までに研究されてきた.しかし、この方法では2 次ビームの生成効率が低く,治療に必要な線量を 得られないという難点がある.

我々は、¹¹CH₄ ガスをイオン源へ供給し¹¹C イ オンの生成をイオン源で行い、それを加速し照射 する方法を提案している.スキャニング照射法で の治療時に、一度の治療にて必要な照射イオンの 数を 10¹⁰ 個とした時、イオン源から供給が必要と なるイオン数はおおよそ 10¹¹ 個となる.¹¹C イオ ンを高効率で生成させることが必要であるため, 我々はロシア JINR 研究所, Dr. Donets らによって 開発された ESIS(Electron String Ion Source)型イオ ン源[1]を応用することを検討している. この ESIS イオン源により,供給した CH₄ 分子数の内, おおよそ 10%を C⁴⁺イオンとして取り出せること が可能である. したがって,イオン源に供給すべ き¹¹CH₄ ガスの量は 10¹² 個となる.

放医研では、PET 診断のための放射性核種生成 法として, H₂ガスを添加した 15 気圧の N₂ガスを 標的とし,¹⁴N(p,a)¹¹C 反応を利用した¹¹CH₄生成 法[2]を用いている. この方法では,20 分の照射 によりおおよそ 10¹³ 個の¹¹CH₄分子(~1 Ci)を生成 することが可能である.この数は要求量を十分満 たしているが, ESIS イオン源へ供給する際に問題 となるのは不純物である.最も数多く含まれるの は標的ガスである N₂分子であり, その数は~10²¹ 個にも達し十分な分離は難しくなる.また, ¹²CH₄ が ¹¹CH₄ と共存する場合も, 化学的特性を利 用した分離法が適用出来ないため大きな問題とな る. 標的内に含まれる¹²C は,一般的な薬剤合成 時の比放射能から考慮すると、全炭素原子の内、 90%以上にも及ぶと考えられる. ESIS 型イオン 源は1パルス当たりに閉じ込められるイオンの総 電荷量に制限が有るため、供給する¹¹CH₄の数に 比べて、不純物の分子数は十分に少なくなければ ならない.

このような背景から, 我々は分子数 10¹² 個, かつ, 高純度の¹¹CH₄ ガスの高効率生成技術の開発 に取り組んでいる.本稿では, 標的材料選定のために行った実験の結果を紹介する.

2. 実験の方法

本研究では、標的ガスが大量に残留することを 防ぐため、標的物質として固体を選択した.ビー ム照射によって生成された¹¹C 原子を固体標的中 から効率的に取り出すためには、気体分子として 取り出すことが望ましい.とくに、ESIS イオン源 への供給を考慮すると、CH₄ ガスが好ましい. このような観点から、我々は水素が豊富に含まれ る水素化ホウ素化合物を標的に採用し、照射と同 時に¹¹CH₄ が得られる手法を検討した.この場合 プロトン照射により¹¹B(p, n)¹¹C 反応を利用して ¹¹C の生成を試みる.

図1に水素化ホウ素化合物である NaBH₄標的を 用いた場合に生成される放射能分布の計算結果を 示す. NaBH₄を用いた場合の生成¹¹C(0.7 Ci, 4.5 ×10¹³個)は,元素状ホウ素を用いた場合(2.7 Ci)に 比べると 1/4 程度の量であるが,目標値である 10¹²個を十分に得られる事が確認できる.

NaBH₄標的を利用した¹¹CH₄生成評価に関する 基礎的な実験は図 2 に示した装置系で行った.照 射装置系は NIRS サイクロトロン, C9 コースに設 置されている垂直照射システム[3]を用いた.標的 ボックス内には,結晶粉末状の NaBH₄を1g封入 し(Thick target), 18 MeV のプロトンを照射した. ¹¹C 原子のメタン化について,標的中に存在する 水素原子の寄与を見るためにキャリアガスとして H₂ガスではなく He ガスを用いた.キャリアガス に含まれる標的からの揮発性分のうち,二酸化炭 素はアスカライトに吸着させた.プロトン照射中

図 1: Thick target 照射による ¹¹C の分布. NaBH₄及び元素状ホウ素の場合.

図 2: 実験装置系の模式図.

は、アスカライトのカラムを Dose Calibrator 内に 置く事で、 $^{11}CO_2$ の放射能をモニタした. コール ドトラップに収集された $^{11}CH_4$ の放射能測定は、2 あるいは 3 半減期後に Dose Calibrator を用いて 行った.

3. 結果と考察

表1にNaBH₄を標的物質に用いた際の放射能の分 布を示す.比較のため,元素状ホウ素を標的とし て行った放射能測定結果も記している.元素状ホ ウ素を用いた場合には、¹¹CH₄としての放射能の 収量は非常に低く,殆どの¹¹C は固体標的中に残 留した.一方で,NaBH₄標的を用いた場合には, 全体の放射能の 30%を¹¹CH₄として取り出す事が 出来た.また、¹¹CH₄の数も 5×10¹² 個 (77 mCi) に達し,目標値を達成する事が出来た.表 2 に ¹¹CH₄として得られた放射能のビーム電流依存性 を示す.ビーム電流の増加と共に,単位電流当り

表 1: NaBH₄と元素状ホウ素標的についての収量の比較.

Target	Carrier Gas	Radioactivity (mCi) / ratio to total				Num. Of Collected
		Total	Target (Non-volatile activity)	¹¹ CO ₂ in Ascalite	¹¹ CH ₄ in cold trap	¹¹ CH ₄
Elemental ^{nat} B	H_2	1410 100%	1404 99.8%	0.052 0.0%	3.2 0.2%	2×1011
$Na^{nat}BH_4$	He	264 100%	185.9 70.4%	0.70 0.3%	77.3 29%	5×10 ¹²
	* Poomo	10 May	10 A Droi	-		

表 2: $"CH_4$ として得られた放射能のビーム電流依存性. NaBH₄ 標的の場合.

Beam Current I _B (μA)	1	5	18
Activity of ¹¹ CH ₄			
A (mCi)	13.6	48.3	77.3
<i>A /I</i> _B (mCi/μA)	13.6	9.7	4.29
			Degraded

の放射能(*A*/*I*_B)の値が低下している事が分かる.この原因の一つとして,過熱による NaBH₄の変形や分解が挙げられる.このダメージを防ぐ為には,ビーム電流の低密度化や冷却の強化が有効であると思われる.なお,本実験結果では,利用した標的物質の組成(分解生成物を含む)やキャリアガスの種類から,揮発した炭素化合物は CO₂及び CH₄のみと仮定している.そのため,コールドトラップにより捕集される放射能は¹¹CH₄ 以外の炭素化合物が含まれる可能性がある.この点を明らかにする為に,今後ガスクロマトグラフィーによる成分析を行う.

以上の実験結果を踏まえて、¹¹CH₄ ガスの生成/ 分離システムの開発を始めている.図3にその模 式図を示す.チェンバーは不純物の低減のために、 1×10^4 Pa 程度の真空状態にし、その体積を1000 cc 程度に抑える.この条件でチェンバーに残留す る分子の数を、室温を仮定して見積もった.その 結果を表3に示す.¹¹CH₄分子を~10¹²個生成する とした場合に大きな問題となる N₂ ガスの量も、 10倍の10¹³個程度に抑えられると期待出来る. チェンバー内にはこれらの不純物に加えて、プロ トン照射によって発生した¹¹CH₄、及び水素ガス、 ジボラン等の分解生成ガスが生じる.これらを分 離するために、蒸気圧の温度依存性を利用した分 離を行う.図4にチェンバー内に存在が想定され

図 3: 真空型 ¹¹CH₄ 生成/分離システムの概念図.

表 3: *P*=1.33×10⁴ Pa にまで真空引きした 1000 cc のチェン バーに残留するガスの粒子数(300 K). 大気中での存在比の多 い順から4成分を示す.

Gas	N ₂	02	Ar	CO2
Volume Ratio In Air (%)	78.1	20.9	0.93	0.03
Number of Particles in 1000-cc, 1.33×10⁴-Pa vol.	2.8×10 ¹³	7.4×10 ¹²	3.3×1011	1.1×10 ¹⁰

るガスの蒸気圧曲線を示す.各々の曲線にて,圧 力を一定に保ちつつ温度を低下させたとき,曲線 の右側は気体,左側は固体となる.この基本性質 を利用して不純物分子の分離を行うには,まず, トラップフィンの温度を数 10 K 程度にまで冷却 し, CH₄ 及びそれよりも蒸気圧の小さい成分(ジボ ラン, CO₂)のみをトラップフィンに凝縮させる. この際ターボポンプは稼働しており, CH₄ 分子よ りも蒸気圧の大きな分子(H₂, N₂, Ar, O₂)は排気され る.その後に, Thermal bridge に取り付けられた 電熱線等によりトラップフィンの温度を制御する ことで,¹¹CH₄ 分子のみを気化させ下流のイオン 源(ESIS 等)へと供給する.この分離のために必要 となるトラップフィンとそれに繋がる熱橋,及び 輻射シールドの冷却には,クライオクーラーの使

図 4: 蒸気圧曲線.実線の領域のみで温度-蒸気圧の関係が求められる.アントワン係数は[4]を用いた.

用を検討している.

4. まとめ

ESIS イオン源の為の 11 CH₄ ガス生成システムの 標的として NaBH₄を提案した.ビーム照射実験に より目標の 11 CH₄ 分子数を収集出来る事が確認出 来た. 今後も予備実験を続けると共に, 11 CH₄ ガ スの生成/分離システムの開発を進める予定である.

参考文献

- [1] E. D. Donets, et al., Rev. Sci. Instrum., 71 (2000) 810.
- [2] J. Noguchi, K. Suzuki, Nucl. Med. Biol., 30 (2003) 335.
- [3] K. Nagatsu, M. Fukuda, K. Minegishi, K. Suzuki, et al. : Appl. Radiat. Isot., 69 (2011) 146-57.
- [4] <http://webbook.nist.gov/chemistry/form-ser.html>