招 ኑ 体 試 П 用 道 0 作

> 古戸義雄 池田 鈴木卓哉 (古河電工 中央研究所 日光研究所*)

田中靖三

近年,シンクロトロン用パルスマグ 序 1. ネットの超電導化を目的とする研究が世界各地 で精力的に進められている。この目的に使う超 電導線は交流損失を抑える為に各種の構造上の 工夫が必要となるが、我々は三層構造,成形燃 線など数種の導体を試作し、交流損失などの測 定を行つたので、その結果を報告する。

交流損失計算^の 超電導シンクロトロンの 2 代表的パラメータ(NAL)に対して、超電導 体のヒステリシス損尺,導体シースの渦電流損 Pe,超電導フィラメント間の常電導金属損Peの各 ▲> 種交流損失を下記の近似式で求めた。その結果 を Fig. 1 に示す。

 $P_{\rm h} = 2 \mu w H_{\rm p} H_{\rm a} (1 - 2 H_{\rm a}/3 H_{\rm p})$ $P_e = \frac{1}{2a\sqrt{\rho}} \frac{2\omega\mu}{\rho} H_p^2 \frac{\sinh 2a/\delta - \sin 2a/\delta}{\cosh 2a/\delta + \cos 2a/\delta}$ $P_{e}^{\prime} = \frac{1}{2l} \sqrt{\frac{2\omega\mu}{\sigma}} H_{\rho}^{2} \frac{\sinh 2l/\sigma}{\cosh 2l/\sigma}$ $H_a = J_c d$ $\int = \sqrt{2/\omega \mu \sigma}$

ここで、Hpは最大磁界,導体 サイズは2a×2b,2lはツ イストピッチ,ωは角周波数 2dは NbTi径, 0, ルはマト リックス金属の導電率及び透 磁率である。

試作導体 上記計算に 3 基いて試作した各種構造の導 体の諸元を右表に示す。0.0 5Hz より早いパルス運転下で は交流損の大部分を占める シース損を低減せしめるため 高抵抗金属のCuNiを配置し

Fig.l Order comparison of AC loss 1. copper sheath 4. copper between filaments

2. copper sheath divided 5. Nb-Ti hysteresis loss (1,000 cores) into 30 parts 6. Nb-Ti hysteresis loss 3. Cu-Ni sheath (10,000 cores)

Table 1 Superconducting cable for pulsed magnet

item	type	TC-A	TC-B	TC-C	CB-48	CS- 7	CS-11	CS-1 5
conductor size								
(mma × mma)		1.22×3.81	1.89×3.78	1.86×3.72	1.91×4.06	1.91×3.81	1.91×3.81	0.92×4.93
strand dia. (mm	n)				0.35	1.05	0.69	0.59
filament dia.								
(micron)		30	37	36	27	10.3	6.8	6.0
number of strand	1	1	1	1	48	7	11	15
number of filame	ent	2,300	2,300	2,300	3,840	21,000	33,000	45,000
copper/supercond	luctor							
ratio		2.6*	1.8*	1.9*	1.1	2	2	1.7
insulating metal	•	Cu-Ni	Cu-Ni	Cu-Ni	In (Sn-Ag)	Sn-Ag	Sn-Ag	Sn-Ag
twist pitch of a	trand							
(mm))		25	25	25	5	12.5	12.5	12.5
braiding or stra	nding							
pitch (mm)					50	50	50	50
critical current	at							
50 kG (A)		1,980	3,850	3,840	3,560	3,080	2,010	1,900
supplied to			NAL	NAL	NAL	NAL	NAL	LBL

TC : Three-component co

: Compacted braided cable

: Compacted stranded cable

: Normal metal / Superconductor ratio

たのが TC-A, TC-B(Fig.2)である。 TC-C(Fig.3) は Cuシースを CuNiにより分割して安定性と渦電 流損の低減を両立させた導体である。

比較的遅いパルス運転ではヒステリシス損が 相対的に大きくなり、 NbTi素線径をより細く する必要があるが、 CS-7,11(Fig.4),15は10 μ 以下の超極細素線を用い、且,SnAg 絶縁成形撚 線に構成してヒステリシス損と渦電流損の双方 を低減せしめたケーブル導体である。

4 交流損失測定 Fig. 5,6 は成形撚線ケーブルの交流損失測定の結果の一例を示したものである。Fig.5で1 kG前後で折曲ががみられ、細い素線でより低い方にずれる傾向が認められる。Fig.6の勾配は渦電流損を意味するが、strand 径に対する顕著な依存性が認められ、理論計算と略一致する。換言すれば分割撚線の効果が実証されたと云える。 が古戸他:第11回低温工学研究発表会A-19(1973) 参考文献20日無他:ICEC-5,504(1974)

Fig.3 TC - C

Fig.4 CS - 11

Fig.5 Magnetic field dependence of AC loss

Fig.6 Frequency dependence of AC loss