18GHz ECR チャージブリーダーの開発

小柳津充広^{A)}、鄭 淳讃^{A)}、東條栄喜^{A)}、渡辺 裕^{A)}、石山博恒^{A)}、榎本一志^{A)}、川上宏金 ^{A)}、片山一郎^{A)}、宮武宇也^{A)}、野村 亨^{A)}、市川進一^{B)}、長 明彦^{B)}、松田 誠^{B)}

^{A)}高エネルギー加速器研究機構 〒305-0801 茨城県つくば市大穂 1-1

^{B)}日本原子力研究所東海研 〒319-1181 茨城県那珂郡東海村白方白根 2-4

概要

現在、原研東海研のタンデム加速器施設において KEK-JAERI 短寿命核ビーム実験施設の建設が進められて いる。ここでは JAERI オンライン同位体分離器によって 作られた1価の短寿命核イオンを多価イオンに変換し後 段加速器で再加速する。この荷電変換のため、チャージブ リーダーとして、18GHzECR イオン源を設計、製作した。 施設へ組み込む前に、KEK 構内のテストベンチで1価の 安定核イオンをチャージブリーダーに打ち込み、多価イオ ンへの変換効率の測定を行った。今までに Ar⁺⁹で13.5%、 Kr⁺¹²で 10.4%、Xe⁺²⁰で 6.5%の価数増殖効率を得た。

1. はじめに

KEK-JAERI 短寿命核ビーム実験施設[1]ではタンデム加 速器からの 30MeV の陽子ビームをウラニウムターゲット に照射してウランの核分裂反応により生成される中性子 過剰核[2]を、表面電離イオン源や FEBIAD イオン源等の ISOL イオン源によって電離し、1 価のイオンビームとし て取り出す[3]。このイオンを後段加速器で加速し、核子 あたり 5~9MeV の短寿命核ビームにするには、1 価のイ オンを後段加速器の加速条件に合った多価イオンにしな ければならない。我々はこの目的に沿って 18GHzECR イ オン源を専用のチャージブリーダーとして設計製作した [4]。このイオン源を 18GHzECR チャージブリーダーと呼 ぶ。

2. 18GHz ECR チャージブリーダー

この 18GHzECR チャージブリーダーの断面図を図1に 示す。建設中の短寿命核ビーム施設で最高エネルギーまで 加速可能な短寿命核イオンの質量/電荷(A/q)は7以下 である。したがって、この条件を満たすようなイオンを効 率よく電離できるように 18GHz、1kW のマイクロ波源を 用いる ECR イオン源を製作した。1 価イオンを ECR プラ ズマ中に入射、捕獲し多価イオンに変換するには、入射イ オンをプラズマチェンバーの中で効率よく止める必要が ある。イオンがチェンバーの壁にぶつかる前に止まるよう に、計算シミュレーションからチェンバー内径が675mm に決められた[5]。さらに構造上、普通のイオン源と異な り、ビーム引き出し側の反対側に1価のイオンを受け入れ、 ECR プラズマに効率よく止めるための減速レンズシステ ムを持っている。入射した1価イオンは減速レンズを通り 急減速され、ミラーコイルの磁場によって軌道を曲げられ ECR プラズマに入る。減速レンズは2重の円筒構造から なっていて、外側の筒がイオン源と同電位になり、内側は 接地されており、両電極の間で主に減速される。図2に ECR チャージブリーダーの軸上磁場分布と6極磁石によ る径方向磁場分布を示す。ECR ゾーンは 18GHz に対して 0.64Tの領域である。左図がミラーコイルによる、典型的 な運転状態での軸上磁場を表している。ビーム入射側のピ ークは~1.55T で最も磁場が強く、引き出し側は低く設定 されている。1価ビームは図の左側から入り、右から多価

図1: KEK 18GHzECR チャージブリーダー断面図

図2: ミラーコイルによる軸上磁場分布(左)と6極磁石による径方向磁場分布(右)

イオンビームとして取り出される。ミラーコイル間隔は 300mm で、二つのコイルの間にさらに補正コイルを設け 軸上磁場を持ち上げられるようにした。右図は6極磁石に よる径方向磁場分布を表している。ECR ゾーンは内壁よ り 12mm のところにある。図からわかるようにこのイオン 源の ECR ゾーンの大きさは約φ50mm x 100mm である。

3. チャージブリーディング実験

KEK におけるテストベンチの配置を図3に示す。図からわかるように、2組のイオン源と分析磁石からできている。初段の永久磁石型の12GHzECR イオン源を用いて、 短寿命核ビームの代わりに安定核の1価イオンを生成する。アインツェルレンズ、1段目の分析電磁石を用いて目的の1価イオンを分析し、第2段に送る。2段目がテストされる ECR チャージブリーダーである。1価のビームはさらに、ダブルスリットを通り入射エミッタンスが決められ(~50πmrad)、チャージブリーダーに入射される。1 価のイオンは12kV+δV で加速され、チャージブリーダー に入る寸前で上記の減速レンズによりほぼゼロエネルギーまで減速されてから ECR プラズマに打ちこまれる。イ オン源とチャージブリーダー間の電位差 V はチャージブ リーダーのプラズマポテンシャルの補正電圧で数 10V か けられている。打ち込まれた1価イオンは、多価イオンと なり、ECR チャージブリーダーから 12kV の加速電圧で 再加速される。入射ビームは1段目の分析電磁石後方のフ ァラディカップで、多価イオンはシステム最後部にあるフ ァラディカップで測られる。この1価イオンのビーム強度 とチャージブリーダーから引き出されたそれぞれの価数 のビーム強度と比べて変換効率を求めた。各々の価数のイ オン電流 (particle ampere)の元の1価イオン電流 (particle ampere) に対する割合を価数増殖効率と呼ぶことにする。 実際は予め目的とするイオンの価数に合わせて ECR チャ ージブリーダーのパラメターを調節してから1価イオン を打ち込む。打ち込み前後のスペクトルを比較して荷電分 布を得る。

4. 実験結果

このようにして、現在まで Ar、Kr、Xe を1価のイオン として打ち込み、チャージブリーダーで得られる荷電分布 を測定してきた。それぞれの典型的な価数増殖効率を表1 に示す。

表1: 価数増殖効率				
	質量数	価数	価数増殖効率(%)	RF(W)
Ar	40	9	13.5	350
Kr	84	12	10.4	350
Xe	132	20	6.5	400

価数増殖効率に対する荷電分布の例として、図4に Ar を、図5に Xe を示す。これらの図で各々の価数の価数増 殖効率を足すとECR チャージブリーダーは両端が開いて いるイオン源なので、およそ 50%となる。イオンが重く なるに従って価数の分布が広がっていくので、各々の価数 に対する価数増殖効率は落ちていく。

図4: Ar の価数増殖効率の荷電分布

5. 考察と今後の課題

短寿命核ビーム実験施設専用のECR チャージブリーダ ーを設計製作し、イオンの価数増殖効率を測定してきた。 これらの実験では 100~500nA 程度のビームを用いて、前 節で述べたような結果を得た。しかし、実際に生成される 短寿命核は、ビームとしては非常に少ないので (<10⁹イオ ン/s)、我々のECR チャージブリーダーの場合は、A/qの 値が6~7の間で残留ガスの多価成分が強く現れると目 的の短寿命核との分離が困難になる。短寿命核イオンをき れいに分離するには、不純物の少ないプラズマを作り、プ ラズマチェンバー中の残留ガス成分 (空気、特に C、O、 N) をできるだけ少なくすることが重要である。我々はこ れまでも、チェンバー内壁の材料や上流側にポンプを増設 したり、ゲッター材を入れて選択的に残留ガス成分を減す 等残留ガスを減らす努力をしてきた。これまで、価数増殖 効率を上げるため、打ち込み実験をしてきたが、この点が 今後の課題と思われる。

参考文献

- [1] H. Miyatake, et al., Nucl. Phys. A 701(2002)62c-66c.
- [2] 川上宏金, KEK Report 2003-4, 2003, H/R.
- [3] S. Ichikawa et al., Nucl. Instru and Meth., B204(2003)372.
- [4] M. Oyaizu, et al., 15th International Workshop on ECR Ion Sources, ECRIS'02, June 12-14, 2002, University of Jyvaskyla, Finland.
- [5] S. C. Jeong, et al., Rev. Sci. Instr. 73, 2(2002)803.