J-PARC 3GeV シンクロトロン用荷電変換フォイル温度分布計算

倉持勝也^{A)}、金正倫計^{A)}、入江吉郎^{B)}、菅井勲^{B)}、五十嵐進^{B)}、

荒木田是夫^{B)}、武田泰弘^{B)}

^{A)}日本原子力研究所 東海研究所 大強度陽子加速器施設開発センター

〒319-1195 茨城県那珂郡東海村白方白根 2-4

^{B)} 高エネルギー加速器研究機構 〒305-0801 茨城県つくば市大穂 1-1

はじめに

材料物性値を表2及び表3にそれぞれ示す.

大強度陽子加速器施設(J-PARC) 3 GeV シンクロト ロン (3 GeV-RCS) では、3 種類の荷電変換フォイル を使用する. 1 つは、リニアックで加速された Hビ ームを H⁺に荷電変換し、3 GeV-RCS へ入射するた めのフォイル (ファーストフォイル)、ファースト フォイルで H⁺ではなく H⁰に変換されたビームを H⁺ ビームに変換するフォイル (セカンドフォイル)、及 びファーストフォイルで変換されずに Hのまま残 ったものを H⁺ビームに変換するフォイル (サードフ オイル) である. セカンドフォイル及びサードフォ イルで H⁺に変換されたビームは下流にある H⁰ビー ムダンプに導かれる[1].

これらのフォイルは用途の違いにより必要とされ る膜厚や材質にも違いがある.それぞれのフォイル の温度上昇(温度分布)を解析計算にて知ることに より,荷電変換フォイルシステムを構築するための 材料,膜厚,及びフォイルの寿命の参考とする.今 回はファーストフォイル,及びサードフォイルにつ いて検討を行った.算出には計算コード ANSYS を 使用し,入力条件として, ACCSIM の出力を利用した.

1 解析モデル

1.1 モデル

フォイルの温度計算に使用したモデルを表1に示す. メッシュサイズは ACCSIM[2]での粒子分布データを 計算コード ANSYS[3]の入力データとしているため, ACCSIM のメッシュサイズに合わせている.

	形状	メッシュ分割
	(横*縦*厚さ)	(横*縦)
モデル1	26mm*12.8mm*1.5 μm	65 * 32
モデル2	36mm * 32mm * 1.5 μm	50 * 50

表1:計算モデル

1.2 物性值

ファーストフォイルは荷電変換後のビームの質が重要となるため、また、周回ビームが何度もフォイルを 通過するために、密度が小さく昇華温度の高い炭素を フォイル材料として利用する.実際使用される炭素フ オイルは真空蒸着等で製作されるため、正確な物性値 が明らかでないので、今回はダイヤモンド、及びグラ ファイトの2種類で計算を行った.

本計算に使用したファースト及びサードフォイルの

表 2:物性值表 1 [4][5] ダイヤモンド グラファイト 密度 g/cm³ 3.51 2.25 比熱 J/g・K 298K 0.51 373K 0.75 500K 1.13 700K 1.48 800K 1.87 1.63 1255K 1100K 1.88 3550K 4.61 熱伝導率 W/m·K 100K 5450 300K 129 400K 936 500K 106 3000K 31 輻射率 0.2,及び 0.8 0.2,及び 0.8 ま2・ 励州 値 ま 9

获5: 杨仁偃衣之				
	アルミニウム		銅	
密度 g/cm ³	2.70		8.93	
比熱 J/g・K	9.17		3.85	
熱伝導率 W/m・K	100K	240	100K	395
	300K	233	300K	381
	700K	92	700K	354
輻射率	0.2	2	0	.2

1.3 解析条件

今回の計算に使用した条件を以下に示す

全ての計算において、フォイルの初期温度、及び 輻射の参照温度は293Kである.輻射の参照温度とは、 面間で受け取られなかった輻射エネルギーを吸収す るための温度である.

(1) 入熱時間条件

図1に入射ビームのパターンを示す.入熱時間条件は.この入射パターンを使用した.

(2) ファーストフォイル

ファーストフォイルは表1に示した両計算モデル で計算を行った.両モデル共,ACCSIMの粒子分布デ ータを入力値とし,ダイヤモンド,及びグラファイ トの両方で輻射率0.2と0.8の2種類でそれぞれのフ ォイルの温度分布を計算した.フォイルの輻射率に 関しては,明らかなデータがないので,輻射率の高低 で温度上昇や分布の違いを評価をするために,0.2 と 0.8の値を使用した.また入射バンプ立ち下り時間50 µsec,100 µsec,及び200 µsecの3種類についてモデ ル2によりフォイルの温度分布を計算した.

ファーストフォイルの入熱条件として, 陽子がフ オイルを通過した際のエネルギーロス (energy deposition) と電子のロス (electron deposition)の和の 値を用いた. 400MeV の陽子1個が 1.5 μm の炭素 フォイルを通過する際のエネルギーロスは 819eV で ある[6]. 入射バンプ立下り時間 100 μsec 時の ACCSIMの粒子分布データを図2に示す. ビーム入射 点における入熱量は 1.7W/cm², 周辺部は 3.4W/cm² で ある.

(3) サードフォイル

サードフォイルはモデル2で計算を行った.フォ イルの材質としてアルミニウム,及び銅の2種類を 使用し,輻射率は0.2とした.入熱条件はファースト フォイルの破損による入射 Hのフルビームの通過, 及び入射バンプ磁場のミストリガによる入射 Hビー ムの10%通過の2種類を想定し計算を行った.フォ イルの膜厚は10 µm,50 µm,及び100 µm の3種類に ついて検討した.

サードフォイルの入熱条件もファーストフォイル 同様,陽子のエネルギーロスとした.10 µm の銅のフ オイルを通過する 400MeV の陽子のエネルギー ロスは 18650eV であり,10 µm のアルミニウムでは 6490eV である[6].

2 温度分布計算結果評価

2.1 ファーストフォイル

代表的な温度分布図,及び最高温度推移グラフを 図3に示し,全計算ケースの計算結果を 表4,及び 表5に示す.

今回の計算結果からフォイル先端部に高温部が集 中することがわかった.これがフォイル周辺部が内 側にカールする等の熱変形の原因であると考えられ る.

⁽¹⁾ ビーム通過直後の温度分布 材質: グラファイト, 輻射率: 0.2

図3:モデル2によるファーストフォイルの 温度分布及び最高温度推移グラフ

· ·	Doint 1	Doint 2	
	Point I	Foint 2	
ケース名	最高温度 (K)	最高温度 (K)	
グラファイト 輻射率:0.2	998	865	
:0.8	748	594	
ダイヤモンド 輻射率:0.2	930	850	
:0.8	696	598	

表4:モデル1計算結果

表5:モデル2計算結果

ケース名 Point 1		Point 2	
	最高温度 (K)	最高温度 (K)	
$T_b=50 \ \mu sec, \ \epsilon_g=0.2$	1069	914.	
$T_b = 100 \ \mu sec$, $\varepsilon_g = 0.2$	1080	918	
$T_b = 100 \ \mu sec, \ \epsilon_g = 0.8$	812	627	
$T_b = 200 \ \mu sec$, $\varepsilon_g = 0.2$	1541	1138	
$T_b = 200 \ \mu sec$, $\varepsilon_g = 0.8$	1226	753	
$T_b = 100 \ \mu sec$, $\varepsilon_d = 0.2$	1014	916	
$T_b = 100 \ \mu sec, \ \epsilon_d = 0.8$	756	639	
$T_b = 200 \ \mu sec, \ \epsilon_d = 0.2$	1449	1176	
$T_b = 200 \mu sec, \epsilon_d = 0.8$	1090	800	

 T_b :バンプ磁場の立下り時間, ϵ_g :グラファイトの輻射率 ϵ_d :ダイヤモンドの輻射率

入射バンプの磁場立下り時間 200 µsec と 100 µsec でのフォイル温度を比較すると, 200 µsec の場合, 100 µsec の場合の約 1.5 倍の温度上昇が見られる.一方, 入射バンプ磁場の立下り時間が, 100 µsec と 50 µsec の場合を比較すると,フォイルの温度上昇には大差 が見られない.3 種類の入射バンプ磁場立下り時間に おいて,フォイルを通過する粒子数がそれぞれ投入 粒子数の約 20倍でほぼ同数であるが, 200 µsec 時では 通過する粒子がフォイル先端部に集中していること が原因で,最高温度に大きな差が生じたと考えられ る. このことから,バンプ磁場が 100 µsec 程度で立 下がれば,周回ビームへの磁場影響が小さく,フォイ ルの温度上昇を抑制することが可能である.以上の ことより,入射バンプ磁場の立下り時間は 100 µsec 以下が必要である.

2.2 サードフォイル

サードフォイルで変換される陽子量は、ファース トフォイルが正常に機能している限り、0.1 ワット以 下である.しかし、このフォイルが破損した場合には、 全 Hビームがサードフォイルを通過することになる. また、もし4台のペイントバンプ電磁石励磁のタイミ ングが何らかの故障で同期しなかった場合、1 ターン 後のビームがサードフォイルを直撃することがある. これらのことを考慮して、フルビーム及び、フルビー ムの 10%がフォイルを通過した場合のフォイルの温 度上昇を計算した. 180MeV フルビーム1ショット通 過時の最高温度推移グラフを図4に、各条件でのビー ム1ショット通過時の最高温度を表6に示す.今回 の入熱条件では,単位体積当たりの入熱量が同じと なるので, 膜厚によらず温度上昇も同じになる. フルビーム1ショット通過時には、銅、及びアルミニ ウム両方で高温になることがわかり, フォイルの破

損が心配される結果となった.以上のことから,事故 時を想定し,サードフォイルも簡便に交換可能なシ ステムが必要であると考えられる.

入射ビーム:180MeV フルビーム 1 ショット 膜厚 10 μm, 輻射率:0.2

- 表6:サードフォイル温度分布計算結果(K)
-----------------------	---	---

エネルギー	物質	膜厚	膜厚	膜厚
通過ビーム		10 µm	50 µm	100 µm
180MeV, 10%	Al	349	349	349
180MeV, full	Al	851	851	851
400MeV, 10%	Al	329	329	329
400MeV, full	Al	647	647	647
180MeV, 10%	Cu	409	409	409
180MeV, full	Cu	1435	1436	1436
400MeV, 10%	Cu	367	367	367
400MeV, full	Cu	1026	1026	1026

3 結言

大強度陽子加速器施設 3 GeV-RCS で使用するフォイ ルの温度分布計算を行った.計算の結果,入射バンプ 磁場の立下り時間が 200 µsec と 100 µsec では,約1.5 倍 の温度上昇があり,100 µsec と 50 µsec では大差がない ことがわかった.ファーストフォイルの温度は入射バ ンプ磁場の立下り時間に依存する.計算の結果,バン プ磁場の立下り時間を 100 µsec で設計を進める方針で ある.

サードフォイルについては銅,アルミ両材料におい てフルビーム通過時に,短期間でフォイルが破損する 場合が考えられる.よって,フォイル交換機能を取り 入れることとした.また,膜厚は機械的強度で決める 必要があるので今後,構造解析計算を行う予定である.

参考文献

- [1] JAERI-Tech 2003-044 p 101
- [2] F W Jones, Accsim Reference Guide, Version 3.5, June 1999, TRIUMF
- [3] ANSYS 伝熱解析セミナーノート
- [4] 無機化学全書 X-2 丸善 昭和 51 年
- [5] 薄膜ハンドブック 日本学術振興会, 薄膜第 131 委員 会編, オーム社, 1983 年
- [6] J F Janni : Technical Report No. AFWL-TR-65-150