原研AVFサイクロトロン装置の現状報告

中村義輝^{A)}、奈良孝幸^{A)}、上松 敬^{A)}、石堀郁夫^{A)}、倉島 俊^{A)}、福田光宏^{A)}、 奥村 進^{A)}、宮脇信正^{A)}、吉田健一^{A)}、荒川和夫^{A)}、田島 訓^{A)} 赤岩勝弘^{B)}、吉田敏浩^{B)}、居城 悟^{B)}、松村秋彦^{B)}、荒川芳隆^{B)}、吉田 剛^{B)}、 狩野 智^{B)}、伊原 彰^{B)}、高野圭介^{B)}

A)日本原子力研究所 高崎研究所 放射線高度利用センター 〒370-1292 群馬県高崎市綿貫町 1233
 B) ビームオペレーション(株) 〒370-1207 群馬県高崎市綿貫町 1233

概要

原研 AVF サイクロトロン装置は、これまで 10 年間以上 にわたって安定な運転が継続されており、広範な研究分野 に多種多様なイオン種を提供している。最近2年間では、 フラットトップ加速システム導入によるマイクロビーム 形成予備試験、偏向機能付きグラジエントコレクターの設 計・製作、サイクロトロン中心領域の改造、等々の技術開 発や装置改造を行ってきた。また一方ではこの間、マグネ ティックチャンネルケース部での真空リークや同出ロバ ッフル部での漏水、真空系用シーケンサーの放射線損傷、 電源盤内小型補助電源の不良、など様々な故障・不具合等 も発生したが、サイクロトロン装置はこれらの困難を克服 し、ほぼ計画通りの運転時間を達成している。

1 サイクロトロン装置の運転と利用

原研 AVF サイクロトロン装置[1]-[3]は、1991 年3月の ファーストビームの引き出し以来、特に深刻な故障等の発 生もなく極めて順調な運転が継続され、材料科学やバイ技 術などの研究利用分野で、幅広く利用されてきている。ま たこれまで、イオン源の増強、制御系の全面更新、カクテ ルビーム加速技術の開発、サイクロトロンビームの高安定 化、等々の装置整備や技術開発も併行して進めてきている。 図1には利用イオン種の推移を示す。初期には軽イオン (H*と D*)の割合が全体の 40%であったが、最近数年間で

また運転時間 は、1993 年以降 では確実に年間 3000 h 以上(平 均では 3216 h) を堅持している。 特に 2002 年度 では運転時間は

これまでで最高の 3433 h に達した。 さらに図2には、 最近7年間におけ る計画ビーム調整 時間の変化を示す。 前述のように運転 時間はほぼ一定値 を示しているにも 拘わらず、調整時 間は初期の約360h から、バイオ技術 関連研究の進展と も相まって、約2 倍の 700 h にまで 急増している。こ のビーム調整時間 には、加速モード、 イオン種、エネル ギー、ビームコー ス等の切換・変更

図2:最近7年間における計画ヒ ム調整時間の変化。

に必要な時間が含まれている。これらの結果は、多種多様 なイオン種を比較的短時間で、頻繁に切り換えて使用する 原研 AVF サイクロトロン装置の運転状態を、忠実に反映 したものとなっている。ちなみに、前述の4種類の変更頻 度は、いずれも年々増加の傾向を示しており、このうちビ ームコースの変更回数は昨年度累計では 290 回にも到達 するなど、"世界で最も多忙なサイクロトロン装置"の Catch phrase を実証する実態となっている。

2 技術開発及び装置改造等

2.1 フラットトップ加速システムの現状

サイクロトロンビームを用いた直径 1 μm のマイクロビ ーム生成のために、2002 年の3月にフラットトップ加速 (FT)システムが設置された。この FT システムは、RF の基本高周波に5倍高調波を重畳させて、加速電圧波形に 平坦部を形成するものであり、共振周波数帯域は55~110 MHz、最大出力は3kWの設計となっている[4]。設置後エ ージングや試験運転等を行い、実用運転に向けた条件整備 を進めてきた結果、Ch1及びCh2のいずれでも、1.5kV 程度の必要なFlat-top電圧を印加できることが確かめられ た。当面のマイクロビーム形成対象イオン種である 260 MeV,²⁰Ne⁷⁺を用いた予備実験では、パルス型ビームチ ョッパーで 100 ns程度にパルス化したビームをサイクロ トロンに入射し、FT システム及び位相スリット等の最適 調整により、ほぼシングルターン引き出しに近い状態が実 現されている[5],[6]。なお、FT システムの共振空洞は、サ イクロトロン共振器の外筒に設置されていたクライオポ ンプのポートに取付けたため、設置に先立ち 2001 年末に はあらかじめポンプ2台(各4m³/s)を移設した。

また、マイクロビーム形成時のサイクロトロンビーム調整では、デフレクター入口におけるビームの周回パターン を正確に観測する必要があるため、先端検出部がタングス テン薄板(厚さ0.5mm)か小径グラファイトロッド(直径 0.5mm)かのいずれかが選択可能な高分解能のデフレクタ ープローブを製作して、電流検出用タンタルブロック型の 既設品と交換・設置した。

2.2 偏向機能付きグラジエントコレクターの設 計と製作

サイクロトロン本体からのビーム引き出し軌道と、ビー ム輸送系基幹ビームライン軸とが約2度整合していない ことから、効率的なビーム輸送や精巧なマイクロビーム形 成等の観点から、高精度化が必要となっていた。そのため、 これまでステアリング電磁石の増設やビームライン全体 の移動、さらにはサイクロトロン本体の旋回など、いくつ かの案が検討されたが実現していなかった。

これらの現実的な代替案として、励磁コイルを収納して 偏向機能を付加した新型のグラジエントコレクター(グラ コレ)を設計・製作し、鉄片の構造体で構成されていた既 設のグラコレと置換した。本体に装着する前の偏向機能付

きグラコレの外 観を、図3に示す。 なお、この改造に インマ、本体ピット コイル用電が 必機械室から3 相 420 Vで150 A容 量の電源を新た に供給した。

量の電源を新た 図3:偏向機能付きグラコレ(設置前)

2.3 高安定軽イオン源用分析電磁石及びビーム ラインの設置

現在軽イオンの生成に用いてい る Multi-cusp イオン源は、約 13 年 間以上の長期間に渡り、すでに約 12000 h 運転されている。この小型 イオン源は、永久磁石を利用した Hot filament 型のものであり、水素 及び重水素イオンの生成のみに利 用されてきた。しかしながら、現在 長期間の使用に伴う経年劣化等の 進行もあり、生成強度や安定度等の 性能低下が問題となっている。この ため、新たに高安定軽イオン源を製 作して、生成強度や安定度の大幅な 改善を図るとともに、既設の ECR イオン源である"OCTOPUS"との併 用領域を拡充するなど、高機能化も 合わせて実現する計画を進めている。イオン源本体の設計・製作に先立ち、後続のビームライン及び分析電磁石等 を設計・製作し、それらを地階のイオン源テストベンチ室 に据え付けた。ビームスリットなど若干の診断機器を組み 込んだ設置状態を、図4に示す。

図4:高安定軽イオン源用ビームライン及び分析電磁石

2.4 サイクロトロン中心領域の改造

前述のマイクロビーム形成では、サイクロトロンビーム のエネルギー幅(ΔE/E)を、2×10⁴ 程度に向上させる必 要があり、位相幅制御の高精度化が必須の要件である。こ の目的でハーモニック数1,2及び3のイオン種における 軌道解析を行った結果、特に中心領域にある位相スリット 位置の最適化が必要であることが分かった。軌道解析結果 では、ハーモニック1及び2では、位相スリット位置及び 先端形状はいずれも小規模な変更で済むが、ハーモニック 3については中心領域でのビーム引き出しを、現在より 180 度回転した位置にするのが最適であることが分かっ た。また、中心領域に配置されているインフレクターにつ いても、RF 加熱対策の一環としてシールドケースと電極 とを分離するなど、一連の改造を実施した[7]。

3 点検保守整備・修理等

通例の年間スケジュールでは、夏期に定期点検(改造等 含む)及びビームテスト(4週間及び1週間程度)、秋に は電源の定期点検(1週間)、3月には比較的小規模な改 良・手直し等が行われている。表1に最近2年間に発生し

衣 I: 取近2年間で光生した主体政障。小共石寺										
時期	故障内容	原 因·対 処 等								
2001/10	マグネティックチャンネル(MC) シールドケーフ部に直空リーク発生	70 MeV, H ⁺ 約6μAのビーム衝撃で溶融・ 第1 # 2 号機への環境								
2002/04	レール 不安安世能の継続	オル、サリケス、マリュア								
	(約2週間程度)	インフレジラー 同圧等へ 部 电線の 男化 耐熱電線の交換								
2002/05	ステアリング電源の極性切換不能	小型制御用電源の不良(電圧低下)								
		同型式の電源合計64台の交換								
2002/11	RF主真空管(4CW50000E)の	中古品の真空管に交換(応急措置)								
	損傷									
2003/01	真空排気系制御シーケンスの異常	制御用シーケンサーの放射線損傷								
	(第1軽イオン室)	Local modeでの運転、シーケンサーの交換								
2003/02	MC出口バッフルスリット部での	漏水部を分離して真空引き、応急措置								
	小規模な漏水(加速箱内)	予備のMo製スリットに交換								
2003/06	純水冷却系循環ポンプのメカニカル	モーターとポンプ連結部のゴムブッシング								
	シール冷却部からの冷却水噴出	劣化による振動増加、予備部品に交換								

表1:最近2年間で発生した主な故障・不具合等

た主な故障・不具合等の内容を示す。

これらの故障のうち、2001 年 10 月に発生したマグネテ ィックチャンネル (MC)シールドケース部の故障につい て、以下に簡単に触れる。サイクロトロンは、70 MeV, H⁺ の高強度ビーム(引き出し電流で約 6 μA)で調整運転さ れていたが、突然本体加速箱の真空圧力が約 1×10³ Pa に まで急上昇し、本体が緊急停止した。この故障原因を調査 したところ、MC の電流導入部からのヘリウムリークテス ト結果から、SUS 製シールドケース部に貫通孔が発生した 可能性が示唆された。早速本体を開放した後 MC ケース内 溝部分を注意深く観察したところ、ビーム入射側端部に小 さな陥没痕の存在が認められ、高強度ビームの衝撃による 局部的な溶融発生がその原因と予測された。

これらの発生状況の概要を図5に示す。このビーム衝撃 の原因は、MC入口バッフルスリット"IN"が、正規の位置 より約3~4 mm 内側に配置されていたためであり、その後 #3号機に置換された際に設置位置を修正した。

4 新ビーム開発等

最近2年間では、偏向機能付きグラコレへの変更及び中 心領域の改造が実施された後、いずれも夏のお盆時期を返 上して精力的にビームテストが実施され、その後に開始さ れた実験利用に備えた。

これまでに原研 AVF サイクロトロンで加速されたイオ

表2:加速イオン種の一覧表。Text はサイクロトロン直後のファラディーカップ (FC)電流に対する半径 900 mm での電流の比、Tall は同様にサイクロトロン直 前の入射系 FC 電流との比を示す。

Ion	Energy	Intensity	Text	Tall	Ion	Energy	Intensity	Text	Tall		
species	(MeV)	(еµА)	(%)	(%)	species	(MeV)	(eµA)	(%)	(%)		
H+	10	12	80	27	²⁰ Ne ⁴⁺	75	1.5	M/Q=5	6.6		
	20	11.5	89	25	²⁰ Ne ⁵⁺	125	0.01	M/0=4			
	30	6.2	78	22	²⁰ Ne ⁶⁺	120	1.6	53	18		
	45	30	79	14	²⁰ Ne ⁶⁺	200	0.8	Scaling	10		
	50	5	44	14	²⁰ Ne ⁷⁺	260	9.8	70	22		
	55	5	63	14	²⁰ Ne ⁷⁺	270	0.28	Scaling	14		
	60	5	57	22	²⁰ Ne ⁸⁺	350	1.5	63	23		
	65	7	62	12	²⁰ Ne ¹⁰⁺	540	10^5 cps	M/Q=2			
	70	5	42	12	²² Ne ⁶⁺	165	0.007	M/0=4			
	80	4.4	72	13	³⁶ Ar ⁸⁺	195	2.5	73	13		
	90	10	48	7.7	$^{36}Ar^{10+}$	195	0.1	43	1.2		
D+	10	11	29	3.7	$^{36}Ar^{18+}$	970	$10^5 \mathrm{cps}$	M/Q=2			
	20	5.6	80	16	40 A = 8+	150	2.4	M/Q=5	6.2		
	25	15	88	31	AI	175	3	73	15		
	35	40	59	13	$^{40}Ar^{10+}$	250	0.2	M/Q=4			
	50	20	49	7.2	40 Ar ¹¹⁺	330	0.7	86	22		
$^{3}\text{He}^{24}$	60	8.2	68	18	$^{40}Ar^{13+}$	460	0.03	63	24		
_⁴He⁺	25	3.6	<u>M/Q=4</u>	13	$^{40}Ca^{9+}$	200	2	61	11		
⁴ He ²⁺	20	5.5	69	12	⁵⁰ Fe ¹¹⁺	200	1.4	M/Q=5	16		
	30	10	42	10	⁵⁶ Ee ¹⁵⁺	400	0.59	66	28		
	50	20	62	22	⁵⁸ Ni ¹⁵⁺	390	0.012	M/Q=4			
	100	10	32	10	82 Kr ²⁰⁺	490	$10' \mathrm{cps}$	M/Q=4			
	108	1.6	M/Q=2		84 Kr ¹⁷⁺	320	0.08	M/Q=5	5.0		
$^{12}C^{3+}$	75	2	M/Q=4		84 Kr ¹⁸⁺	400	0.04	60	2		
$^{12}C^{5+}$	220	1	77	22	84 Kr ²⁰⁺	520	0.06	72	22		
$^{12}C^{6+}$	320	0.008	M/Q=2		84 Kr ²¹⁺	525	0.0032	M/Q=4			
¹⁴ N ³⁺	67	4	43	10	$^{102}Ru^{18+}$	320	0.013	50	2.7		
¹⁵ N ³⁺	56	0.70	M/Q=5	5.0	129 Xe ²³⁺	450	0.2	72	11		
¹⁶ O ⁴⁺	100	5	M/Q=4	22	$^{197}Au^{31+}$	500	0.023	49	3		
¹⁶ O ⁵⁺	100	4	34	21	M/Q = 2, 4 and 5 : a series of cocktail beams						
¹⁶ O ⁶⁺	160	1.9	58	21	Colored pattern : modified data on						
¹⁶ 0 ⁷⁺	225	1	82	13	previous table						
¹⁶ 0 ⁷⁺	335	0.1	41	6							
1608+	420	0.0045	M/0-2								

図5:マグネティックチャンネルケース部の真空リーク 発生状況概要図。

ン種を表2に示す。ここ数年における代表的な内容では、 1)20 MeV,30 MeV 及び80 MeV のH⁺イオンの3種類に ついて、入念な最適化調整運転を行ってビーム強度を増強 した、2)優先的なマイクロビーム形成対象イオン種であ る260 MeV, ²⁰Ne⁷⁺で、イオン源をOCTOPUSからHECR に切り換えるとともに、設計値パラメーターに基づいた再 調整を行い、約30倍の飛躍的なビーム強度の増強が図ら れた、3)新たに金属イオンの320 MeV, ¹⁰²Ru¹⁸⁺及び60 MeV, ³He²⁺(100 MeV, ⁴He²⁺の代替イオン種)が開発され

た、4) Cocktail beam (M/Q=4)でのシ リーズに、⁴He⁺及び同位体 ²²Ne⁶⁺の イオン種が追加された、等々が挙げ られる。

参考文献

[1] Y. Nakamura, T. Nara, T. Agematsu,
I. Ishibori, *et al.*, JAERI-Review 2002-035 (TIARA Annual Report 2001)
pp. 300-302 (2002)

[2] Y. Nakamura, T. Nara, T. Agematsu, I. Ishibori, et al., Proceedings of International Workshop on Accelerator Operation, Hayama and Tsukuba, Kanagawa and Ibaraki, Japan (2003) [3] 中村 義輝、奈良 孝幸、上松 敬、石堀 郁夫、他:第12回 TIARA 研究発表会予稿集、pp33-34 (2003) [4] M. Fukuda, S. Kurashima, S. Okumura, N. Miyawaki, et al., Rev. Sci. Instrum., 74, 2, pp. 2293-2299 (2003) [5] 倉島 俊、福田 光宏、奥村 進、宮脇 信正、他:第12回 TIARA 研究発表会予稿集、pp. 17-18 (2003) [6] 倉島 俊、福田 光宏、宮脇 信 正、奥村 進、他:本加速器科学研 究発表会予稿集、(2003) [7] 宮脇 信正、福田 光宏、倉島

俊、奥村 進、他:本加速器科学研 究発表会予稿集、(2003)