

Research Unit for Integrated Sensor Systems

Introduction and Overview

Georg Gaderer

Austrian Academy of Sciences

- Governmental funded research organization in Austria
 - Multi-disciplinary
 - Learned society as expertise background
 - Some members: Christian Doppler, Erwin Schrödinger, Victor Hess, Julius Wagner-Jauregg, Konrad Lorenz
 - Research body organized in institutes (HEPHY), research units (FISS), commissions (Medieval History Research)
 - ~1100 Employees (Research Administration)
- Current President: Peter Schuster (chemistry)

(Pre) History

- Several sensor research projects...
 - Capacitive angular rate sensors
 - Flow sensors
- ... yielded fundamental insights into design methodology:
- You ought not
 - start with ASIC design after the transducer concept has been fixed
 - think of transducer non-idealities as post-design, purely ASIC-related issues
- Vision:
 - Integrated Development of Integrated Sensor Systems (~2001)
 - Research Unit for Integrated Sensor Systems (2004)

Status

- Start in April 2004
 - 4 years start-up phase
 - Funded by Austrian National Bank and the province of Lower Austria
- 28 team members
 - Plus 3 technology experts at the Vienna University of Technology
- Part of "Technopole" Wiener Neustadt
 - Research institutes and companies working in
 - Surface technology
 - Electrochemistry
 - Tribology
 - Microsystems

Modern Sensor Systems

- Local intelligence
 - Complex, mostly digital multi-level signal processing
 - Advanced functionality
- Sensor fusion
 - Combination of different (cost efficient) sensors
 - Compensation of disturbing effects
- Networking
 - Distributed sensor networks, "networked embedded systems"
 - Interconnection to higher-level systems
- Need for integrative, system-oriented solutions

Preferred System Concept

- "Closed-loop" structure
 - Stimulus of transducer can be controlled
 - Higher fault tolerance and accuracy
 - Adaptive systems
 - Higher dynamic range

Research Focus and Expertise

- Resonant and inertial sensors
 - Viscosity measurement
 - Magnetic field measurement
- Miniaturized thermal sensors
 - Flow measurement
 - Thermal conductivity measurement
- Capacitive sensors
- Architectures for smart sensor systems
 - Modular FPGA-based system-on-chip architectures
 - Signal processing for smart sensors
- Clock synchronization in sensor networks

Hard- and software support
 Security aspects

Vertical integration

Software agents on RFIDs

7

500 µm

Thermistoren

Heizelement

Diaphragma

Projects and Core Expertise Fields

Clock Synchronization Activates

- Background
 - Several years of activities (group from Vienna University of Technology
 - SynUTC, PSynUTC
 - Spin-Off: Oregano Systems

- Begin of IEEE1588 Standardization Activities
- Clock Synchronization Group
 - Current Status
 - 12 members (11 FTE)
 - 3 base funded, 9 third party funded
 - Activities
 - Fault Tolerant Clock Synchronization
 - Localization Services
 - Industrial Clock Synchronization
 - Security Aspects
 - IEEE 1588 standardization
 - Society/Teaching
 - ISPCS, Special Section TIM,

Master Group Concept IMAGINE

- SynUTC group
- Fault tolerant
- Some nodes with GPS
- Backup nodes
- IEEE1588 Slaves
 - Synchronized standard compliar
 - Less traffic between Master Group speaker and slaves
- New efficiency with m masters

$$\eta_{\text{hybrid}} = \frac{(m-1) + n}{m \times (m-1) + n} = \frac{m+n-1}{m^2 - m + n}.$$

usual case: m<<n

Localization services using synchronized Clocks

11

FlexWARE Project: Flexible Wireless Automation in Real-Time Networks

Thank you for your attention

Georg Gaderer

Georg.Gaderer@oeaw.ac.at

